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ABSTRACT

In Chapter 2 it is shown how to construct infinitely 
many conserved quantities for the classical non-linear 
Schrodinger equation associated with an arbitrary Hermitian 
symmetric space G/K. These quantities are non-local in 
general, but include a series of local quantities as a special 
case. Their Poisson bracket algebra is studied, and is found 
to be a realization of the "half" Kac-Moody algebra k ®  C [ x ] ,  

consisting of polynomials in positive powers of a complex 
parameter X which have coefficients in k (the Lie algebra of 
K).

In Chapter 3 the construction is extended to provide a 
realization of the Kac-Moody algebra k ® <C[x,X *]. One can 
then define auxiliary quantities to obtain the full algebra 
% ® C[x,X *]. This leads to the formal linearization of the 
system.

In Chapter 4 the procedure is generalized so as to 
enable one to construct realizations of centre-free Kac-Moody 
algebras as hierarchies of 1+1 dimensional classical dynamical 
systems. The equations of motion (which are, in general, 
non-local) have Hamiltonians which form realizations of the 
same algebra. The Cartan subalgebra provides infinitely many 
conserved quantities in involution, while a sub-class of the 
step operators (which may be interpreted as generators of 
translations in "internal dimensions") enable the systems to 
be linearized. The systems can be regarded as having a "gauge 
symmetry" which includes momentum.
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CHAPTER 1: INTRODUCTORY REMARKS
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A classical (conservative) Hamiltonian system with n 
degrees of freedom and Poisson bracket { , } is called 
completely integrable if there exist n mutually involutive 
conserved quantities I ; i.e.

V j  - l*’h ] = 0 l<j<n (1)

t W  - 0 l<j,k<n (2)

Under these conditions one can (in principle) perform a
transformation to new canonical variables I ., <b .J J
("action-angle" variables). The Hamiltonian will be
expressible in terms of the 1̂. variables alone, and so the
Hamiltonian equations for <J> . can be integrated to giveJ

♦,(t) = *(0) + (9H/3I )t (3)cl

and the system can be solved by transforming back to the
original dynamical variables. Systems of this type have the
maximum possible degree of constraint, and can be thought of
as the opposite of totally disordered (ergodic) systems.

The concept first arose in the nineteenth century,
particularly in the work of Jacobi, who investigated the case
of geodesic motion on an ellipsoid, and other systems [l].
The integration of the equations (by "quadratures") gave rise
to the theory of elliptic functions. It should be noted that
even if the quantities I. are not in involution, it may stillJ
be possible to obtain action-angle variables and solve the 
system; for example, the six conserved quantities in the



9

Kepler problem have a Poisson bracket algebra isomorphic to 
S0(4) [2 ]. The action-angle variables for this system are of 
importance in celestial mechanics, and also played a role in 
the development of atomic theory. Some authors only require 
the existence of action-angle variables for a system to be 
called completely integrable.

Until quite recently, few cases were known of non-linear 
systems which are integrable, but during the last twenty years 
it has become apparent that a wide range of physically 
interesting examples do exist. Many of these are (one 
dimensional) field theories; i.e. there are infinitely many 
conserved quantities.

The modern study of integrable systems could be said to 
have been initiated (fortuitously) in a computer experiment of 
Fermi, Pasta, and Ulam [3] on the behaviour of one dimensional 
lattices (a line of masses linked by "springs") with linear 
nearest-neighbour interactions which are subject to a 
nonlinear perturbation. For purely linear interactions, the 
energy in each normal mode will remain constant in time. One 
would expect the perturbation (which introduces non-linear 
coupling between the modes) to give rise to ergodic motion 
(i.e. the energy eventually becomes evenly distributed between 
the modes). Surprisingly the behaviour of the lattice was in 
fact found to be periodic! If the non-linear perturbation is 
quadratic, then one can, with certain approximations, 
transform the equation of motion for a lattice particle in the 
continuum limit to the Korteweg-de Vries (KdV) equation:

u. + auu + u t x xxx 0 (4)
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(see e.g. [4]). Eq. (4) can be regarded as the generic example 
of a system which is weakly dispersive and weakly non-linear. 
It was used by Korteweg and de Vries [5] as a model for water 
waves in a shallow channel. A solution of (4) is

2 3u = sech (\x + \ t) (5)

This is a localised "hump" which maintains its shape as it 
propagates. (The first observation in nature of a wave of this 
form was made by Russell in 1834 on the Union Canal near 
Edinburgh). In the lattice experiment, momentum was being 
transferred along the chain in localized "packets". This was 
the first indication that the KdV equation is integrable.

Further numerical studies were carried out by Zabusky and 
Kruskal [6], who found more "solitary wave" solutions, and 
discovered that these had the remarkable property that when 
they passed through each other they only underwent a change of 
phase. They named these waves "solitons", to reflect their 
particle-like behaviour.

The complete analytical solution of the KdV equation was 
carried out by Gardner et al in 1967 [7]. They showed that if 
u is a solution then the Schrodinger equation

<l>xx “ u4> = ( 6 )

has time independent eigenvalues. Then the problem was reduced 
to that of reconstructing a "potential" u for the Schrodinger 
equation given a set of scattering data (boundary conditions). 
This problem had previously been solved by Gel'fand and
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Levitan [8]. Because of the connection with scattering theory, 
the method of solution is known as "inverse scattering"* One 
consequence of the method was that it provided a construction 
for infinitely many conserved quantities, which indicated that 
the KdV equation can be regarded as an integrable field 
theory.

It was shown by Lax [9] that the feature underlying the 
inverse scattering method is the representation of the KdV 
equation in the form

for operators L,A which depend on (x,d , d ByX X X
substituting other "Lax pairs" L,A into (7), one could obtain 
(and solve) other systems. The solution of the system is 
possible because the "scattering data" evolves linearly. This 
is reminiscent of the transformation to action-angle variables 
mentioned earlier. It has been shown by Zakharov and Faddeev
[10] that they are in fact related.

Another important reformulation of the method was 
introduced by Zakharov and Shabat (ZS) [11], who considered 
the non-linear Schrodinger equation

which arises (e.g. in optics) when there is weak non-linearity 
and strong dispersion. They observed that (8) can be written 
as

dtL = [L,A] (7)

" 2 |q| q2 * ( 8 )

( 9 )
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where

*
\/2 q

-q -*/2
( 1 0 )

2 * /2 - q q -xq + iqx
9 *\ /2 + q q

At -i (11)
\q + iq x

(notice that the parameter X does not appear in the equation 

of motion). The representation (9) was used by Ablowitz et al 

(AKNS) [12] to solve a wide class of systems. It is the 

ZS/AKNS representation which will be used (and further 

generalized) in this thesis, rather than the operator 

formalism of Lax.

Eq. (9) can be regarded as a "zero-curvature condition" 

for "gauge potentials" (A , A ), and is invariant under aX U
"gauge transformation"; i.e. if w is any 2x2 unimodular matrix 

and

a^ = to + a) ^ a ^ w )  ( 1 2 )

and (13) is a new representation for the equation of motion. 

This fact enables one to construct the conserved quantities in 

a simple way, by choosing w to be an infinite polynomial in 

powers of X (with matrix coefficients) such that ax and a^ are 

diagonal. Then

then

(13)
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(14)

and the coefficients of powers of X in are conserved 

currents, i.e. if a is expressed in terms of fields at a
w

point (and their derivatives) then

d.fa. = 0
t J X (15)

(using integration by parts). More generally, if (A ,A ) areX X
polynomials in powers of X with coefficients in a Lie algebra 

g, then one wishes to find a group valued element oj such that

a , a belong to a Cartan subalgebra of g. This has been 

carried out for the non-linear a model in [13], and the Toda 

system in [14]•

The "gauge symmetry" of these systems suggests a link 

with high energy physics; indeed, the Toda equation arises in 

the theory of magnetic monopoles [15], and the self dual Yang 

Mills gauge theory has been shown to possess an infinite class 

of conserved quantities [16]. Of greatest interest, however, 

is the possibility of a connection with string theory. It has 

recently been observed that the work of several Japanese 

authors [17] on the completely integrable Kadomtsev- 

Petviashvili equation is of relevance in string theory, and 

this may lead one to wonder whether integrability may be a 

fundamental natural principle.

The starting point for the work presented here was an 

attempt to construct (in the manner of [14]) the conserved 

quantities associated with a matrix generalization of (8) due 

to Fordy and Kulish [18]:
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iqat
P Y 6 *q q q R aPY“6 (16)

(summation implied over repeated indices, and

e c = fen[e . e J l ) ,  which is here called the
a py - 6  l P l y - 6  J J *

"generalized non-linear Schrodinger" (GNLS) equation. The A 

potential is of the form

A = XE + A*?X X (17)

with coefficients in a "symmetric Lie algebra"

g = k © m  (18)

[k,k]ck [ k, m] d m [ m , m ] d k  (19)

is a matrix field which lies in m, and E is a special 

element such that

k = (geg: [E,g] = 0} ( 20 )

and (adE) = -I on m. A given by (17) is a generalization of
^  A

the potential (10), and one can look for the corresponding 

generalization of (11) by solving the zero curvature 

condition, i.e. (following [18]), choose

At  = x24 2) + xAt X) + Al 0) (21)

and substitute A ,A intoX L
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9 A, - 5 A + [A ,A . ] = 0X t t X L X* t J (22)

Now equate coefficients of powers of X. For X one obtains

[E, A«2)] = 0 (23)

A(2)- v , ,2 .i.e. A^ £ k, and X gives

8xA t2) + tE> A t 1 } ] + tA x> A t2 ) ] = 0 (24)

Using (19) to split this into k and m components this becomes

\ < 4 2)> = o (25)

[E, A^>] + [A°, a [2 >] = 0 (26)

(2)i.e. A£ ' is a constant element of k, and one can obtain 

(A^^)~ from (26). Then, from the coefficient of X1,

v Ar > ~ + tAx- = 0 (27)

V At1))2 + tE > At0>] + tAx> (At1}>~] = 0 (28)

(1) ~ (0) ~One obtains (A^ ') from (27), and (A^ 1) from (28). The 
coefficient of X^ gives

v 4 0)> + tAx- (4 0))2] = 0 (29)

\ Ax " &x(Ai0))B + [A°x- <A<t0)>~] (30)
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(O') ~(A£ ') is found from (29), and the corresponding equation of
motion is given by (30).

(2)If one chooses ' = E then the. solution can be reduced 
to

At = \2E + XA° + [E, 8XA°] + 1/2[A°[A°, E]] (31)

Writing A^ = -q e ± q e_a» the corresponding equation of
( 2 )motion is (16). For a general choice of A^ , however, A^ is

non-local (the general solution of (27) is 
. k m

(a£ = -J* dx[A , (A^ 0~]), and the equation of motion is
a mixed integro-differential equation.

Instead of choosing A^ to be a polynomial of order two,
one can solve (22) to find Â. as a polynomial to any order N
in positive powers of One finds in the same way that the
coefficients of degree less than N-l are, in general,
non-local. The equations of motion form a "hierarchy"
associated with Ax given by (17), each labelled by (N,k) (the

( 2 )order of Â ., and the choice of A^ '). The GNLS equation is 
labelled (2,E). Now, an observed feature of 2x2 ZS-type 
systems is that the Hamiltonians of such hierarchies are 
conserved quantities for any equation of motion in the 
hierarchy, and this suggests that the GNLS equation may have 
non-local conserved quantities (which do not arise in the 2x2 
case, since k is one dimensional and one must choose A£ y 
proportional to E). One can construct a non-local gauge 
transformation which takes Ax, A^ into the Cartan subalgebra, 
but then the equation (14), being non-local, may no longer be
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interpreted as a continuity equation. So the problem which 
will first be considered, in Chapters 2 and 3, is the 
construction of Hamiltonians for the hierarchy of equations of 
motion associated with (17), and the derivation of their 
Poisson bracket algebra. This will motivate a general approach 
to integrable systems associated with zero curvature 
representations, which is presented in Chapter 4.
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CHAPTER 2: LOCAL AND NON-LOCAL CONSERVED QUANTITIES FOR 
GENERALIZED NON-LINEAR SCHRODINGER EQUATIONS.
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1. INTRODUCTION.

Fordy and Kulish [l] have considered a class of 
non-linear partial differential equations, each associated 
with an Hermitian symmetric space G/K, which are of the form

iqat
a p y 6* a

qxx ' q q q R(iY-6 (1.1)

where summation is implied over repeated indices. qa(x,t) are 
fields in one space dimension whose label a denotes a root of 
g (the Lie algebra of G) such that the step operator ê  does 
not lie in k (the Lie algebra of K). R is the "curvature 
tensor" defined by

e r“ i = [eJe ,e J] a Py-o l P l y -o j j (1.2)

A special case of (1.1), corresponding to G=SU(2), is 
the non-linear Schrodinger (NLS) equation

iqt = qxx + 2 lql 2q (1-3)

Equation (1.1) will be referred to as the Generalized
non-linear Schrodinger (GNLS) equation associated with G/K.
The NLS equation is known to have infinitely many conserved
quantities which are local (in the sense that the currents are

*expressed only in terms of the fields q(x,t), q (x,t) and 
their derivatives at a point), and are in involution (i.e. 
their Poisson bracket algebra is abelian). The aim of this
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paper is to construct the algebra of conserved quantities for 
the GNLS equation.

The existence of such quantities is related to the fact 
that the equation of motion can be expressed as a ’’zero 
curvature condition”

F* t 5 t v w V  = 0 ^ - 4)

where A , A are Lie algebra valued polynomials in a
X  *c

parameter \ € C (the "spectral parameter") which does not 
appear in the equation of motion. Equation (1.4) is the 
consistency condition for the coupled pair of linear 
equations

$ + A $ = 0x x (1.5a)

$ + A $'= 0 (1.5b)
w w

For the NLS equation, A^ and A^ are 2x2 matrices, and 
it is fairly easy to construct the group element $ (the 
"monodromy matrix"). The logarithm of its diagonal elements 
can be expanded in powers of \ to give conserved quantities 
[2 ] .

It is shown in [l] that the GNLS equation is associated 
with the pair

= X.E + A° (1.6a)A A

At = \2E + \A° + [E,dxA°] + 1/2[A°[A°,E]] (1 .6b)
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where E is a special constant element which commutes with any 
element of k, satisfying

[E,e 1 = -ie for all a (1.7)L aJ a

and

A ea + qa (1.8)

For algebras of rank greater than one, the monodromy 
matrix (which is a path ordered exponential) becomes difficult 
to work with. It is then more convenient to use the algebraic 
properties of the zero curvature condition (1.4), in 
particular its invariance under a gauge transformation

a “1a “1A + a — go A_go + 0) a)
X X X  X

A “ 1 a a .  “ 1A ^ - v  a -j-=  ^  A .j .0 )  +  go c j ^.

(1.9a)

(1.9b)

where go e. G. The new pair a , a^ are associated with the samex t
equation of motion as the pair A , A,. Olive and Turok [3]X *u
have used this invariance to study the Toda equation. In that 
case it is possible to construct go s o  that ax, a^ e  h, the 
Cartan subalgebra, go takes the form

go =  e x p z * = 1 \ (1 .10)

and is local. Then a^ and a^ are descending power series, and
the zero curvature condition becomes
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(1.11)

which implies that the coefficients of arbitrary powers of \ 
are conserved currents.

equation, one encounters the problem that the gauge
transformation which takes A and A. into the Cartanx t
subalgebra is now non-local, so that equation (1 .1 1 ) can no 
longer be interpreted as a conservation law. In order to 
discuss non-local conserved quantities, it is necessary to 
investigate the Poisson bracket algebra.

Consider first the Hamiltonian of the GNLS equation. 
Using (1.7) and (1.8) one finds

In attempting to apply this method to the GNLS

(1.12)

oc cc *If q , q are regarded as canonical variables, then 
differentiation of both sides of (1 .1 2 ) with respect to qa ,
d♦q gives Hamilton's equations

q“ = dH/dqa* (1.13a)

q“*= -dH/dqa (1.13b)

where

H « i/Tr([E,A°]atA°) (1.14)

(the proportionality sign is used because there is actually a
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constraint which must be taken into account).

Now, the equation of motion can be read off from the 

zero curvature condition (1.4) as the coefficient of X^:

a a0t x (1.15)

where is the coefficient of X^ in (1.6b). In this way one 

obtains an explicit expression for H in terms of the fields 

q a , qa and their derivatives.

It was shown in [l] that instead of considering A^given 

by (1.6b), one can look for

A t ENn=0 (1.16)

by substituting into the zero curvature condition (1.4) and

equating coefficients of \n to zero. The coefficient of the
Nhighest power of X, i.e. A^, is left undetermined, but must be

Na constant element of k. When A^.=E, the resulting expression
Nfor A^ is local, but for a general element A^=k £. k, one finds 

that A is non-local. A (k) will denote A having theL i i  t
Nleading term X k.

Each possible choice of AN (k) will give rise to a 

different equation of motion, given by the coefficient of X° 

in the zero curvature condition:

5N,kA x = 8 xA N<k > + [ « < * > ] (1.17)

N,kThe collection of operators 5 will be regarded as
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independent evolution operators defining infinitely many 
"times". When N=2 and k=E, AN(k) is given by (1.6b), and so 
50 „ is the GNLS evolution operator. For a fixed value of kz, hi
one has a hierarchy of equations of motion labelled by N>0. 
When k=E this will be referred to as the "GNLS hierarchy".

For each equation of motion (1.17), one can obtain its 
Hamiltonian in the form (1.14). The Hamiltonian for the 
equation arising from the pair A , AM(k) will be denoted by 
H^(k). It will be seen that HN(k) is non-local in general, 
but the Hamiltonians HN(E) of the GNLS hierarchy are local. 
Furthermore, the entire collection of H^(k) will turn out to 
be conserved quantities for the GNLS equation. To show this 
it is necessary to construct the Poisson bracket algebra of 
the Hamiltonians, and this is done by considering the 
commutation relations of the evolution operators 5^ One 
first has to find closed expressions for ^ and A^(k)
(the method used in [l] of solving the zero curvature 
condition gives the coefficients of A^(k) recursively). This 
is where the gauge invariance property proves useful. It 
turns out that a non-local transformation of the form (1 .1 0 ) 
can be constructed so that

A -► a = \E (1.18)x x  '

The zero curvature condition will then be satisfied by

at = XNk s aN(k) (1.19)

where N>0 and k 6 k is constant. Now the gauge transformation
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(1.9b) is inverted to obtain

A^ = (oaN(k)w-1 -1

-1 (1.20)

If A^ is chosen to have only positive powers of X then 
one can equate coefficients to obtain

which is the equation of motion associated with A^(k) in 
closed form. This will be used to derive the main result of 
this paper;

for all N,M>0, k,j e. k. In other words, the evolution 
operators form "half" of a Kac-Moody algebra (since N and M 
take only positive values). Equation (1.23) will be used, 
together with the Jacobi identity, to establish the final 
result

* _ _N . N-n, . -1, * /i x^t 2n=0  ̂ )n AN(k) (1 .2 1 )

(where cokw E~_qX. n(a)̂ w *)n )• Also, one finds that the 
coefficient of \ * in (1 .2 0 ) gives

(1.22)

(1.23)

lHN (k)’HM (J)* = HN+M([k>J]) (1.24)
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which states that the Hamiltonians have the same "Kac-Moody" 
algebraic structure under the Poisson bracket. In particular, 
one has

{HN(k),H2 (E)} = 0 (1.25)

This means that the entire collection of Hamiltonians are
conserved quantities for the GNLS equation.

In Section 2 it will be shown how the gauge
transformation is constructed in terms of the field
variables qa, qa . The solution of the zero curvature
condition to give AXT(k) and dXT , in closed form will beN N,k
discussed in Section 3. In Section 4 the Hamiltonians and 
their Poisson bracket algebra will be considered, and it will 
be shown in Section 5 that HN(E) is local for all N. Finally, 
in Section 6 , the results obtained will be compared with the 
work of Olive and Turok, and possible generalizations to other 
systems will be discussed.

2. CONSTRUCTION OF u).

Let G/K be an Hermitian symmetric space, where k (the 
Lie algebra of K) is the centralizer of E and g (the Lie 
algebra of G) decomposes as

g = k ©  m
I’Nrf (2 .1 )

The step operators of the Cartan-Weyl basis of g which lie in
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k are denoted by Latin letters (e ), while those which lie in ^ a
m are denoted by Greek letters (e )• The set of positive 
~ a

roots whose step operators lie in m is called 0 .
It is explained in the Appendix that E satisfies the 

property

[E,e ] * ice (2.2)L * aJ a

where k is a constant for all a 6 0+. E will be chosen so 
that

ic - -i (2.3)

Now, following [l], define

A = XE + A° (2.4)x x

where

A^ = -qae + qa*e £ m (2.5)x a -a ~

The main object of interest is the "zero curvature 
condition"

F . = [a +A ,8 +A 1 = 0 (2.6)xt L X X t tJ

where Â. is a polynomial in X with coefficients in g. The 
only restriction on A is that the resulting equation of

v
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motion for the fields qa(x,t) implied by (2 .6 ) must be 
independent of X.

Equation (2.6) is invariant under a "gauge 
transformation"

A -*> a = u) a) + (i) *̂5 a) \l - (x, t) (2.7)
r  r  r* r*

where uj(X;x,t)eG. In other words

[3x+ax,8t+at] = 0 (2 .8 )

Equation (2.8) is associated with the same equation of motion 
as (2.6). However, it may be possible to find a
transformation such that a is independent of the fields qa ,
oc ̂q . In that case, the equation of motion is implied by the 
transformation (2.7) with |i=t, which can be thought of as an 
equation of motion for w. Such a transformation will, in 
fact, prove to be very useful in what follows. Notice that Ax 
and A can be thought of as elements of the "loop algebra"

w

g ® <C[x,X *] (where (C[x,X is the algebra of Laurent 
polynomials in the complex variable X). It is therefore 
natural to consider oj as an element of the "loop group". It 
will be chosen to have the form

a) = expE* -X nw (u) eg) (2.9)n=l n n ~

This is the type of gauge transformation used in [3] in 
connection with the Toda equation. By expanding (2.9) as a 
power series in X one obtains the identities:
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(U -1A<1.)n = E“= 1 (-l)r ( r ! ) - \ k ;Ek._n ) [«k [«k [•••[«k .A]...]]]
l i  l ct r

(2 .1 0 a)

r , . -1.

-1
(uAu *)n - z“=1(r!) 12(k. :Ek.=n)[“k [“k [•••[“!£ -*]•••]]]l i  l a r

(2 .1 0 b)

<“_1V n  =

£ r _ l ( - l )  (r!) .Tlf = n -i [“ v  [ • • • [“ >  >a „ “ k  ] • • • ] ]( k ^ z k ^ n ) 1- kx —r_ 1 •* kr
(2 .1 1 a)

,  -(U) 0) ) „ =x \l 'n

Zr=l(r!) E(k. :Ek.=n)ta)k1 ̂ k   ̂ * twk _ 1 •••]]]1 1  1 « I* 1 I
(2 .1 1 b)

These can then be used to write a^ (2.7) as a power series

a = XE + E°° nx"”nan x n=0 x

= XE + {A° - [iolfE]}

+ X 1 { -[(d2 ,E] + 1/2[o)1 [(d 1 ,E] ] - [wlfA®] + dxUj}

+ X 2 { -[u>3 ,E] + l/2[to1 [a)2 ,E] ] + l/2[co2 [co1 ,E] ]

- 1/6[w 1[cd1[w 1,E] ]] - [w 2,Ax  ̂ + 1/2[t0i[a)i» Axll

+ dxo)2 - } + ... (2 .12)
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It will now be shown that it is possible to construct w so 
that

a 55 X.E (2.13)x

One can see from (2.12) that aj = 0 if

[Ul,E] = A° (2.14)

Using (A.8 ) and (2.3), this implies

m no)~ = [E,A°]

= iqaea + iqa ea (2.15)

m xwhere denotes the component of in m. Now consider ax«
The commutation relations (A.14) can be used to equate the k 
and m components to zero:/V

(a*)~ = l/2[U®[o)l,E]] - [u.®,A°] + 6xu~ = 0

i.e (2.16)

using (2.14), and

1 m k k n m
(ax)~ = -[oo2 ,E] + l/2[o>~[a)1 ,E] ] - [io~,A~] + 9xco~ = 0

i.e.
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m f e n[u 2 ,E] = 5xa>1 - l/2[a)~,Ax] (2.17)

using (2.14) again. Notice that (2.16) determines 
non-locally:

= l/28-1[A°[A°,E]] (2.18)

while (2.17) gives

4  = -ax Ax + l/2[E[A°,a- 1 [A°[A°,E]]]]X L X (2.19)

For a general term a^ (n>l) one has

ax = -[“n+l>EJ + + l/2[oon[(o1 (E]] " K ’O

+ d a) + (terms involving w.. ) x n j<n (2 .2 0 )

This can be split up into k and m components and equated to 
zero to obtain

k m m  m m  m n
5x“n = “ 1 /2 K K . E ] ]  + [«;,A“]

+ (terms involving wj<n) (2 .2 1 )

k m  k m
t“ n + 1 .E] = 1/2[m ~[ u ;,E]] + l / 2 [ ^ [ w ~ , E ] ] r ~ 4 ° iL“n-Ax]

m
+ a w + (terms involving w., ) (2 .2 2 )x n j > n ^

So for each n the requirement a”_=0 determines to~ and m
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m
In [3], only the condition (an)~=0 is imposed, so that 

k
w~is left undetermined and can be chosen to be zero to all n
orders- This gauge transformation will be denoted w. The 
first few terms are obtained from (2 -1 2 ) as follows:

A° i.e. wx = [E,A°] (2.23)

V l i.e. w« = -d A®2 X X (2.24)

[w 3 ,E] = -l/6 [w1 [w1 [w1 ,E]]] + ^ [ w ^ w ^ A ® ] ]  + axw2

i.e. w3 = l/3[E[w1 [w1 >Ax]]] - (2.25)

and so on. Notice that, unlike go, w is local to all orders.

3. SOLUTION OF THE ZERO CURVATURE CONDITION.

One wishes to find such that the zero curvature 
condition (2.6) is satisfied with A given by (2.4). As in

X

[l], A will be assumed to be of the form
V

At = En=0*“A? (3-1>

Consider the gauge transformed potentials

a_ =  go A go + u) oo =\E
X X  X

â . = oo Â oo + oo oô

(3.2a)

(3.2b)
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where w is the gauge transformation constructed in Section 2.
One can see from the identities (2.10a>, (2.11a) that 
descending power series of the form

a. is a t

_ ,N -N , . 0 . -11 .“ \ ^ • • • * T \ ■ • • •

Now substitute (3.2a), (3.3) into the zero curvature 
condition

(3.3)

V t  - 8 tax + [ax’alJ = 0 

and equate powers of X to zero:

(3.4)

,N+1. r„ -Ni n . -N X : J 0 i.e. a^ e. k (3.5)

. N a ”N , r t? 1“N -i n - : axat + LE»at J ® 0 (3.6)

Split this into parts in k and m to obtain the result that a N 
t1-Nis a constant and a^ €. k. Continuing in this way one finds

that all of the coefficients of a. are constant elements of k.t ~
One can choose

J,a^ = X k

Now invert the transformation (3.2b):

a “ 1 - 1— (oâ w -

(3.7)

.N . - 1  - 1= X o)ko) - (3.8)
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Since oĵ oj * has only negative powers of X, and is chosen to 
have no negative powers, it follows that

At = (3-9)

_ mwhere (wkw ) denotes the coefficient of \i in co(̂ )ku) (m-). 
By (2.10b), Â. given by (3.9) has X^k as its highest order 
term. Since N and k are arbitrary, the notation A^(k) will be 
used for the object defined by (3.9).

Turning now to the negative powers of X in (3.8), one 
can equate coefficients to obtain

^ t w n̂ = ^ kll> ^N+n (3.10)

for all nM. The derivative with respect to t corresponds to 
the equation of motion arising from A^(k). For each choice of 
N or k there will be a different equation of motion, and so 
the evolution operator associated with A^(k) will be 
denoted d . The collection of these operators can be

JN y K

thought of as describing the evolution of the fields with 
respect to infinitely many independent time variables.

In this notation, (3.10) becomes

(wN ,kw 1)n = ^a)ka) N+n (3.11)

for all n>l, N>0. In particular, choose n=l. Then, using 
(2 .1 1 b)

N, k 1a)̂ = (o)ko) )̂N+l (3.12)
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By (2.15), this implies

iqa = (wkw ^)a (3.13a)
N,k N+l

iqa = (wkw )̂ a (3.13b)
N,k N+l

”1 + rr —1where (a)ka> )” is the coefficient of e+a in a>ku) . Equations
(3.13) give the equation of motion corresponding to the pair 
A , A^(k). (One can check them directly from the zero 
curvature condition (2.6), using (2.4) and (3.9)).
Consistency of (3.13a) and (3.13b) requires the restriction to 
the compact real form of g [l], which means that k must be of 
the form

k1*= -k1 (3.14a)

ka*= -k“a (3.14b)

(where k = k1 h.+kae„+k ae ). v i a -a7

4. POISSON BRACKET ALGEBRA.

The algebra of the evolution operators will now be 
investigated. This will allow the construction of the Poisson 
bracket algebra of the Hamiltonians for the equations of 
motion (3.13).

Recall equation (3.12), and act on both sides with the 
evolution operator . (M>0, j £ k) to obtainM, j — ~
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-1
dM,jdN,kl0l aM,j(a,ka) ^N+l

* wko) ] )jj+1

= s5-oC(MM,d""1>N+l-p ’ <“k"“1>pl

= E5-ot(“J“"1)lI+N+l-p ’ (4,1)

(Use has been made of (3.11) and the identity

dfgXg"1) * [g-.g”1 »gXg"*1  ] + g9 Xg" 1 V g « G, X e g)-1 „ -1 -1

The same calculation with (M,j) and (N,k) interchanged leads 
to

r, . t _ -N+M+lr, . —1. / . —xx -i
taN,k * dM,jJw l ~ Eq=0 [ (wkoj )N+M+1_q >q J

-1

= ([a)ka)"1 ,wjw" 1 ] ) N+M+1

(to[k,j]a) ) N+M+1

* &N+M,[k,j]“l (4.2)

using (3.12). In particular, (2.14) enables one to write

t8N,k ' 8M,j]Ax _ 8N+M,[k,j]Ax (4.3)

for all N,M>0, k,j € k.
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Equation (4.3) states that the evolution operators form
an algebra isomorphic to k^ ® C[\]. ^  denotes the compact
real form of k (this distinction is necessary because of the 
consistency condition (3.14)) and <C[\] denotes the algebra of 
Laurent polynomials in positive powers of \. The algebra 
defined by (4.3) can be thought of as "half" of a Kac-Moody 
algebra [4].

Now define the Poisson bracket between two functions A 
and B as

{A,B} = E/dz(8A/dqa (z).dB/aqa*(z)-aB/&q0t(z).aA/dqa*(z)) (4.4)

(arguments, delta functions etc. will subsequently be 
suppressed for clarity). The Hamiltonian H^(k) for the 
equation of motion (3.13) associated with AN(k) is defined by 
the relation

a function, such as H^(k), is of course well defined). 
Definition (4.4) is equivalent to Hamilton’s equations:

4  = lAx«HN<k >} (4.5)

(the Poisson bracket between an element of g, such as A^, and

a = dHN (k)/dq (4.6a)
N , k

qa* = -dHN (k)/aqa 
N , k

(4.6b)

Equations (4.3) and (4.5) can be used to rewrite the
Jacobi identity
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{A°{HN(k),HM(j)}}+{HN(k){HM(J),A°}}+{HM(j){A°,HN(k)}} = 0
(4.7)

in the form

(Ax {HN (k),HM (j)}} - [aN>k . j ]A x

,0
aN+M,[k,j] x

={A°,HN+M([k.J]>} <4-8>

which implies that

(HN(k),HM(j)} = HN+M([k,j]) + c";k, j M (4.9)

k iwhere is a constant. Equation (4.9) states that the
Poisson bracket algebra is the ’’half” Kac-Moody algebra with
central extension. In fact, the central term can always be
made to disappear by a suitable re-definition of the
generators [5]. (In the present case, this is simply a
reflection of the fact that the Hamiltonians are only defined
up to a constant). For the case j=E, it is easy to check

k Eusing the Jacobi identity that CN*M vanishes identically. In 
particular, this means that

{HN(k),H2 (E)} = 0 (4.10)

where H (E) is the GNLS Hamiltonian. Therefore one can
consider the entire collection of Hamiltonians H%T(k) to beN
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conserved quantities for the GNLS equation.
It only remains to find the explicit form of H. 

First, put k=E and N=0 in (3.13):

iq“ = [« ,E]“ = -q“
0, E 1

using (2.10b) and (2.14). It is then clear from (4.6 

H0 (E) = i / q V *

(summation implied). Now use (4.10), (4.5) to deduce 

. r a a* _ n8N>k/<l <1 = 0

It follows that

r, a a* a a*x 0 r a a* nc a* aJ(q q - q q ) = -2 Jq q = 2 Jq q N,k N,k N,k N,k

Next, use (3.12) to write

/TrCA^ku,"1) ^  = jTr(A°3N)kUl)

= J (- iq V * + iq“ q“*)N,k N,k

Then use (4.14) and differentiate:

q^ = "i/25/5q /Tr(Axu)ko) n̂+1 

qN %  = i/2d/Qqa/Tr(A^wkw” 1 ) N + 1

(k).

(4.11)

that

(4.12)

(4.13)

(4.14)

(4.15)

(4.16a)

(4.16b
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Comparing these with (4.6), one can choose

HN(k) = -i/2/Tr(A^a)ko)“ 1 ) N + 1 (4.17)

5. THE GNLS HIERARCHY.

It is clear from the construction of w in Section 2
that the operators dN ^ give rise, in general, to non-local
equations of motion (with non-local Hamiltonians). What is,
perhaps, rather surprising is that for k=E the equations of
motion (the GNLS hierarchy) are all local. To show this, the
objects A._(E), H._(E) and „ will here be reconstructed in N N N, E
terms of local quantities.

It was shown in Section 2 that this is a local gauge 
transformation. Now, as in Section 3, one wishes to find at 
such that the zero curvature condition

Consider the gauge transformation w which takes A intox
k:

x (5.1)

+ [ax ,St] = 0 (5.2)

is satisfied, where a^ has the general form

(5.3)
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Substitute (5.1) and (5.3) into (5.2), and equate 
coefficients of powers of X:

,N+1. r_, ~“N -I _ .X • [E|â . J 0 — Ni.e. a. e. kt ~

,N: _ ~-N . r_ (N-l) i __ nX dxat + LE»at J - 0

i.e. a”(N"l)^ ij anci a N --N^ ^ k ana â. is a constant. Choose â. =E

XN-1; ^S-tN-l) + [E.J-tN-ajj + = Q

Again, split this into parts in m and k to find a.^N 
and

&X,-(N-1) = ra-N>sx]

~-N ~1Since a. =E, and a £ k, this becomes t x ~

~^(N 1) _

Choose a ^ N *^=0, and continue in the same fashion, one 
that â. can be chosen to have the form

~ . L  . ® -n~na. = X E + Z_.X a.t n-l t

Now invert the gauge transformation

Aj. = wa^w * - w^w ^

(5.4)

(5.5)

(5.6) 

k

(5.7)

(5.8) 

finds

(5.9)

(5.10)



45

and equate positive powers of X to obtain

At "
.N
‘n=0 Xn(wEw 1)„N-n (5.11)

This has leading term XNE, and is equal to AN(E) as given by
(3.9) with k=E (and the constants of integration set to zero). 
It immediately follows that

(i)Eo)-1 wEw-1 (5.12)

to all orders. One can deduce from this that the equations of 
motion (3.13) and Hamiltonians (4.17) become local for k=E. 
Notice, incidentally, that the equation of motion cannot be 
read off from the coefficient of X * in (5.10), since a^ is 
non-zero. One can, however, obtain it from the zero curvature 
condition:

.0 r.0 A0-| 
5xAt *

([w x W _ 1 ,w Ew " 1 ])n  + [A°,(w Ew _ 1 )n ]

•([\E,w Ew-1])n (since [ax,E] = 0)

[E,(wEw _1)n+1] (5.13)

Finally, the Hamiltonians H^(E) will be calculated for 
N=0,l,2. One uses (2.23), (2.24), (2.25) to obtain

Tr(A°wEw 1 ) 1 = Tr(A°[Wl,E]) = Tr(A°A°) (5.14)
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Tr(A°wEw 1 ) 2 = Tr(A^{[w2 ,E] + l/2 [w1 [w1 ,E]]})

55 Tr(A^[w2 ,E]) (since [w1 [w1 ,E]] a k)

= Tr(E[axA^,A°]) (5.15)

Tr(AxwEw“ 1 ) 3 = Tr(Ax([w3 ,E] + l/6 [w1 [w1 [w±,E]]]))

(only terms in m contribute)

= -Tr(A°axxA°) - l/2Tr([A°[A°,E]]2) (5.16)

One can work these out explicitly in terms of the fields qa, 
a*q (see Appendix I) to find

Hq (E) = i / q V * (5.17)

Hl(E) = l/2jq“q**- q°qf (5.18)

H2 (E) = i/q“q“*+ qaV q V * R “ Y _ 6 (5.19)

(integration by parts has been used in (5.19)). (5.17) and
(5.18) are straightforward generalizations of the "particle 
number" and "momentum" of the NLS equation [2]. (5.19) gives
the Hamiltonian of the GNLS equation.

One can also check the expressions for AN(E) and g. 
For example, from (5.13)
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3 2,EAx = -([E,wEw - 1 ] ) 3

= tE’ 3xxAx " 1/2twxt»1-A®133 (5.20)

In terms of the fields this becomes

(5.21a)

(5.21b)

as expected. The calculation of A2 (E) is as follows:

(using (2.23), (2.24)). This is in agreement with (1.6b).
Of course, equation (5.11) ensures that the same 

results would be obtained if w were used instead of w, 
although the calculation is more complicated.

6 . DISCUSSION.

The GNLS equation has two important special cases. As
was mentioned earlier, the familiar non-linear Schrodinger
equation corresponds to g=su(2). In that case, k is the one

_ /tlx 2 n, _ -1,A2 (E) = En=0  ̂ <wEw >N-n

= \2E + x[w1 (E] + [w 2 ,E] + l/2[w1 [w1 ,E]]

= \2E + \A° + [E,dxA°] + 1/2[A°[A°,E]] (5.22)
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dimensional Cartan subalgebra, so that any element of k is a 
scalar multiple of E. Consequently only the local series of 
charges exists. The GNLS equation associated with 
SU(n+l)/(U(l) x SU(n)) is known as the vector non-linear 
SchrOdinger equation, and has arisen (like the NLS equation) 
in non-linear optics [6 ]. Non-local charges will exist for 
n>2. It would be interesting to find out whether such 
quantities could have any physical significance.

A major step in the construction of HN(k) was to find a 
general form for A^(k). For k-E, the same expression can, in 
fact, be found using the P-operator method of Olive and Turok
[3] (the P-operator in the present case is the Casimir 
operator for g 0  g [l]) although the conditions they assume no 
longer hold (i.e. E is not regular).

As a generalization of the system considered here, one 
could begin with a trivial solution of the zero curvature 
condition:

XPA (6 .1 a)

*na (6 .1 b)

where A, A are constants and [A,A]=0. One then finds Ax , Â. 
as series in positive powers of X using the inverse gauge 
transformation

A — wa a)  ̂— a) u)  ̂ (6.2)

Those coefficients w which remain undetermined by then
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requirement that (6 .2 ) be consistent can be considered as
m

dynamical fields (for the GNLS case this was o)̂ >. This will 
be discussed further in a subsequent paper. The evolution 
operators will obey the same "half" Kac-Moody algebra, but the 
precise form of the Hamiltonians will depend on the structure 
of Ax. It is anticipated that a generalization of the 
P-operator method will be applicable.
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APPENDIX.

Some results are given here concerning Lie algebras and 
symmetric spaces. Further details can be found in, e.g.,
[7].

The Cartan-Weyl basis fh.,e : h. eh, r e of a1 1 r 1  ~
complex semi-simple Lie algebra g, with Cartan subalgebra h, 
satisfies the following relations (where $ is the set of roots 
and r e. $ can be positive or negative):

[h^hj] = 0 (A.la)

[hi’erJ = rier (A.lb)

(If H = Hxĥ  e h, where summation over i is implied, then

[H,er] = HlrierE H*rer (A.lc)

The dot is used to indicate summation over Cartan subalgebra 
indices).

r.h (A.Id)

If r* -s then

[e ,e ] = N e .L r sJ r,s r+s (A.le)

where N =0 if r+s is not a root. One can check the useful r,s
identities:
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N = -N = N = N r,s -r,-s -s,-r s,-r-s (A.2)

basis is scaled so that

Tr<hi V  = 6u (A.3a)

Tr(e e ) = 6 r -s rs (A.3b)

Tr(h.e ) = 0 v l r' (A.3c)

From now on, r,s,... will denote only positive roots.
For any element A e g define the ’’centralizer” C(A) of

A by

C(A) = {B €. g: [A,B]=0| (A.4)

An element H € h is called regular if C(H)=h.
Let E € h be an element with the property that for any

fsj

(positive) root r, E.r is either zero or takes a constant
value k . (Such an element does not always exist - for example

+Eg does not possess one). Now define the set 9 of roots 
which satisfy

E.a = k (A.5)

for all a €: 0+. Denoting by $+ the set of positive roots, and 
defining 0+= $+-0+, then

E.a = 0 (A.6 )
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for all a 6 0+. The Greek letters a,p,y»»** will always 
denote elements of 9+, and the Latin letters a,b,c,... will 
denote elements of 0+.

C(E) is a subalgebra spanned by {h^,e+a: h^6 h,a £ 0+} , 
which will be denoted by k. Then

g = k @ m (A.7)

where m, the orthogonal complement of k, is a subspace spanned 
by {©+a* a 6 0+}. Notice that [E,A] e m for any element A 
g. Also

9 m[E[E,A]] = (A.8 )

m
where A~ is the component of A in m. The Jacobi identity 
implies the useful special cases:

[[E,m]k] = [E[m,k]] for all m € m, k 6 k (A.9)

[[E,m1 ]m2] = [[E.mgJmjJ for all m1, m2 e m (A.10)

From the definition of E one deduces the following:

[ V ep] = te-aie-p] = 0 (A-U >

[ea -e_p] e k (A.12)

a±a €. 0+ (if it is a root) (A.13)
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Then

[k,k] c k [k,m] c  m [m,m] c  k (A.14)

i.e. g is a "symmetric algebra" and G/K is a symmetric space. 
The curvature tensor is defined as

R ± cc± 0 ± y te ± c J e ±p ,e± y ^  

The identity (A.11) implies

(A.15)

R Q = R Q apY a-p-Y 0

while (A.12), (A.13) give

(A.16)

R-5ap- Y 0 (A.17)

etc. In fact, the symmetric spaces constructed in the way 
described above are "Hermitian", and the curvature tensor 
satisfies

(RpY-6^ R-P-y6 (A.18)

Finally, it is useful to give the commutator for two 
general elements of g. Writing the components as

A = A.h + Aae + A ae + Aae + A ae a -a a (A.19)

then



54

[A,B] = (AaB“a - A~aBa)a.h + (AaB~a - A~aBa)a.h

+ (A.aBa - AaB.a + AbBa~bN . + A”bBa+bN .cL | D cL | " D

+ AaB“a+aN + A-ocBa+aN )e-a,a -a,-a a

+ (A"aB.a - A.aB a + AbB“a“bN . + A~bB“a+bN .a,b a,-b

+ AaB“a“aN + A~aBa aN )ea, a a,-a -a

+ (A.aBa - AaB.a + Aa PBPN Q + APBa“PN Q)ea ,-p - a ,p a

(A”aB.a - A.aB“a + AP aB PN + A_PBP“aN ft)e
- a , p a,-p - a

(A.20)
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SCHRODINGER EQUATIONS
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1. INTRODUCTION

This is a continuation of the work presented in [l], 
in which it was shown how to construct conserved quantities 
for the generalized non-linear Schrodinger (GNLS) equation 
of Fordy and Kulish [2]:

P y 6* aq V q  BgY_6 (1.1)

(summation is implied over repeated indices) which is 
associated with a Lie algebra g = k ® m. q(x,t) is a

rv

matrix field in 1+1 dimensions whose components lie in m, and 
k is the centralizer of a special Cartan subalgebra element E 
satisfying the property

[E,e 1 = -ieL or* a (1.2 )

for all e^ 6  m (where a is positive). This means that the 
algebra g is "symmetric", i.e.

[k,k] C k  [£>S] C ®  C k  (1.3)

The curvature tensor R has components in m defined by

e R a
a
py-6 “ [SP[eY >_J] (1.4)

Equation (1.1) can be written as a zero-curvature condition

6xAt “ 6tAx + t V At] = 0 (1.5)
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where

A = \E + A° (1.6a)x x  v

At = \2E + \A° + [E,dxA°] + 1/2[A°[A°,E]] (1.6b)

and

A0x -qaea q—ae-a
The component form of (1.5) is

(1.7)

iqat
a B v —6„aq + Q m T a . (1.8a)

-iq-at —<x — R — y  6 „ - a+ q pi Yq r-p-y6 (1.8b)

The choices q a = ±qa correspond to the restriction to the 
non-compact (+) or compact (-) real forms of g, and lead to 
equation (1.1) with a plus or minus sign.

One can find other values of A^ as a polynomial in \ 
such that the new equation of motion (1.5), with A given by 
(1.6a), is still independent of \. Each such A is 
associated, via (1.5), with an evolution operator 5 . It was

v

shown in [l] that when A^ is a polynomial in positive powers
only, the collection of evolution operators can be labelled

, , where k £ k and N is a positive integer, and that they N,k ~
have the commutation relation

[aM, 3,aN,lJ M+N,[j,k] VM.N > 0;j,k e k (1.9)
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In this paper, the case will be considered when is a 
polynomial in negative powers of X. This will lead to the 
construction of evolution operators d „ . such that“ii i K

[a an,kl " m+n,[j,k] m,n 6 Z; j,k 6 k (1.10)

The complete collection of operators d+^ ^ provides a 
realization of the Kac-Moody algebra k & C[x,X_1], where 
<C[X,X *] is the algebra of Laurent polynomials in the complex 
variable X. The parameters (±N,k) are thought of as 
infinitely many independent "time" variables.

In [l] it was shown how to construct a group element of 
the form

* —nw = expZ_1 X ojn=l n (1.11)

defined by

Xo)Eo)-1 -10) 0) X = XE + A0 (1.12)

Under the gauge transformation

A -> a) ^A a) + a) 0̂) — XEX X  X (1.13a)

a “1a ^ “1A^ -> a) A^w + to (ô. = â . (1.13b)

where A^ is unknown, the zero curvature condition (1.5)
becomes
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axa t + [X E »a t] 55 0

This equation can be satisfied by choosing

(1.14)

<<II■p
cd (1.15)

where N is a positive integer and k £  k is constant, 

transformation (1.13b) is inverted to obtain

The

. _ ,N . -1 -1Â . - X cokw - 0)̂.0) (1.16)

If A^ is chosen to have no negative powers of X, then it is

determined uniquely by (1.16) as the positive power part of 
N -1X wkw , while the action of on u is determined by the 

negative power part. and a^ defined in this way are

denoted AN (k), dN Equating coefficients of powers 

in (1.16) one obtains

of X.

A N (k) = £n_0 X (wkto )N_ n (1.17a)

(wN,ka)_1)n = («kai‘ 1)N+n (1.17b)

where (...) denotes the coefficient of X n . The relation

(1.9) follows from the definition (1.17b).

Now suppose that one chooses

"N,a^ = X k (1.18)

as a solution to (1.14). Then the inverse gauge
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transformation (1.13b) gives

-1 (1.19)

which does not determine A_^(k). For example, if N>1 then

One can think of (1.19) as defining the action of 5 on to—IN * K
in terms of the as yet undetermined A_N(k). To find A_N(k) as 
a polynomial in negative powers of X, one would like to have 
an equation like (1.19) in which w is replaced by a group 
element which contains only non-negative powers of X, i.e. one 
would like to find to of the form

the coefficient of X  ̂ in (1.19) is

(1 .20)

(1.21)

such that one can perform the transformation

A -► to A  to + 0) w = XE
A  X  X

(1.22a)

at (1.22b)

±NThen one can again consider the solutions â. * X k for
(1.14). For the case X k, the inverse transformation
(1.22 b) gives

-1 (1.23)
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which enables one to obtain A __(k) and the action of 5-N -N,k
on w, by equating coefficients of powers of X. The case
N ~X k defines the action of dXT , on w in terms of Ax.(k)N,k N
(1.17a). To construct w, one writes it in the form

a) = cpQ (1.24)

where c|> is independent of X, and

Q = expE .X $3 n=l n (1.25)

It will be shown in Section 2 that equation (1.22a) determines
Q to all orders in terms of the auxiliary field <|>. In Section
3 the commutation relations of the evolution operators d+N ^
will be investigated, which will show them to form a
realization of a Kac-Moody algebra. The class of operators
can be extended by allowing the algebra element to be an
arbitrary element of g, rather than just of k. In Section 4
the Hamiltonians for the operators a „ are considered.±N,g
Their Poisson bracket algebra provides a realization of the
Kac-Moody algebra g ® <D[\,\ *] © (Dc. In Section 5 it is shown
that the formal sum of Hamiltonians for the operators d^XT±N, ea
can be used to linearize the system. The interpretation of 
these operators is discussed in Section 6.

2. CONSTRUCTION OF Z

Let a) be an element of the Lie group G, of the form
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a) = 4>Q (2 .1 )

where (\> is independent of X, and

00 Q= exp E -X Q * n=l n

Now fix Z by choosing

XwEw  ̂- w o>  ̂= A
X  X

(2 .2 )

(2.3)

where is given by (1.6a); i.e.

XE + A° = Xc^QEQ’V 1 - - cj; dT* (2.4)A A A

Equating coefficients of powers of X°, one can see that

A° = "“’x4’”1 (2'5)

Notice that <\> is the group element which arises in the 
transformation between the GNLS system and the generalized 
Heisenberg ferromagnet [2]. (This will be explained more 
fully in Section 6). The X-dependent part of (2.4) becomes

XQEq""1 - Q ^ ”1 = Xcp"1Ec|; (2.6)

Now, by expanding (2.2) as a power series in X, one can obtain
the identities
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(QEQ )n Sr=1(r!) Ek .2k =ntQk1tQk ^##- Q̂k ,E^'#’^^i i 1 2  r
(2,7a)

(Q q "1) =v x yn

zr=l(r!) lzk.:Ek.=nt°k [Qk0t#,*tQk »^xQk ]...]]] i i  1 2  r-1 r
(2.7b)

where (...) denotes the coefficient of \n. Use these to n
equate coefficients of \n in (2.6):

\ l d Q< “ E " i|) E(p x 1

i.e. Q1 = xE - a”1(<ir1E<|>) (2.8a)

 ̂ * ^x^2 l/2[0i,»xQi] = [Q^»E]

i.e. Q2 = 1/25”1( [E, d“1(4»”1Ecl>) ] + x[E,<|;“1E<|»]

+ [c|i-1E(|;, d”1 (4>-1E(|>) ]) (2.8b)

and so on. In general one has

(axQ_1)n = (2'9)

for all n>l, and so b Q is determined in terms of Q . • Inx n m<n
this way, Q is determined to all orders non-locally in terms 
of <|>.
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3. THE EVOLUTION OPERATORS

Recall the zero curvature condition

dxAt - atAx + tAx'At] = 0

where A is given by (1.6a) and A is unknown. Consider x t
the gauge transformation

-1.to A x oj -1
0) 0). = \E

-1.0) Â.0) -1(0 (0. = a.

(3.2a)

(3.2b)

where w is the group element defined by (1.12), of the 
form
w = expE~_^\ D(JJn * Under the transformation (3.2), the zero 
curvature condition (3.1) becomes

5 a. + [\E,a.] = 0 (3.3)X X  x

One can choose the solutions 

+ Nat = \ ik (3.4)

for (3.3) (where N is a positive integer). Then (3.2b) can 
be inverted to obtain

AN(k) = X̂ coko) ^ “ ^N, kw
-1 (3.5a)
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(o_n  ̂ — A_^(k) (3.5b)

where AN(k) is chosen to be a polynomial in non-negative 
powers of X, while A_N(k) is a polynomial in negative 
powers. Equation (3.5a) defines A^(k) and the action of 
5  on g o , while (3.5b) is regarded as defining the action 
of a „ , on to in terms of A _T(k), which is still- N , k  -N
undetermined.

Now consider the gauge transformation (3.2) with go 

replaced by go as constructed in Section 2. Then, from the 
definition (2.3),

IV ( V“ J_/VA -* GO A GO +  GO GO = XE X X  X (3.6a)

— 1 „ — i~
A^. -► GO A ^ G O  +* GO GO^. =  a ^ (3.6b)

where Â. is considered unknown. The zero curvature condition 
again takes the form (3.3), and the solutions (3.4) can be 
used to invert (3.6b) to give

A_N(k) = -N~ ~-lX cokGO
-1 (3.7 af)

GO
-1 X̂ cokGo  ̂- A^(k) (3.7b)

Equation (3.7a) defines A_^(k) as the negative power part of 
X ^wkw and defines go_^ ^go  ̂ as the positive power part. 

Equation (3.7b) defines the action of  ̂on go in terms of 
AN(k), which was defined by the positive power part of (3.5a). 
Explicitly, one has
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AN(k) = s”=0^n(“k“~1)H-n = En=OxIlAN(k) (3.8a)

((o„ . u } = (oikw  ̂)„ (3.8b)v N,k yn v yN+n v

(from (3.5a)), where (f(w))n denotes the coefficient of X n in 
f(w),

A_N(k) = E^=1X-n<|>(QkQ-1 )N_n(t>_1 = ^ =1X-nA°N(k) (3.9a)

(Q-N,kQ-1)n = (QkQ_1)N+n (3.9b)

for N>0 (from (3.7a), using (2.1)), where (f(Q)) denotes the 
coefficient of Xn in f(Q),

I'N.k*1’"1 = "AN(k) = -(“k“-1)N (VN > 0) (3.10a)

<1>q = (j>k4» ~ k (3.10b)

(from the coefficient of X^ in (3.7b), using (2.1) and 
(3.8a)),

'•’-N.k'1'-1 = <K QkQ-1)N<l'-1 ( V n > 0) (3.11)

(from the coefficient of X^ in (3.7a)). Lastly, (3.5b) and 
(3.7b) become

o)_N kw”1 = x”N(i)ka)_1 - Ẑ =1x“ncKQkQ“1 )N_n4,” 1 ( V N > 0) (3.12a)

QN kQ_1 = xNQkQ_1 " E^_iXn(J>-1 (a)ka)’’1)N_n4> (V N > 0) (3.12b)
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Q0 k0""1 = QkQ_1 “ k (3.12c)

(using (3.9a), (3.8a) and (3.10)).
Notice that (3.8b) implies

1)n = ("E“ 1)n+l = (uxio 1)a (3.13)

(by (1.12)), i.e.

ai,E " \ (3.14)

and so, by (3.10a),

M -1 = = ~A° (3.15)

(using (1.12) again). This is consistent with (2.5). Now, co
satisfies identities like (2.7) , where (...) is taken n to
denote the coefficient of X n, so that (from (3.15))

5N,kAx = [dN,kwl,E]

(using (2.7b))

i-H+5533II (from (3.8b)) (3.16a)

d-N,kAx [a-N,k“l,E]

and
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= [(wN>kw (using (2.7b))

= [(wka)“1)N+1,E] (from (3.8b)) (3.16a)

and

= [E,A^N(k)] (from the coefficient 
of \-1 in (3.5b))

i.e. -d-N,kVM,x(<I>X4» 1) = [E, 4»(QkQ 1)n_14» 1] (3.16b)

(by (3.9a) and (2.5)). Equations (3.16) are the equations 
of motion corresponding to A+N(k). (one could also obtain 
them by substitution of (3.8a), (3.9a) in (3.1)).

The commutation properties of the evolution 
operators will now be investigated. Recall equations 
(3.5):

(or alternatively use w, i.e. equations (3.7)) and consider 
the identity

(3.18)



70

for all m,n £ Z, k,j €. k. Using (3.17), one has

5n k ^ m  1 ~ An(k),ojja) 1] - an,kAm ^  (3.19)

One finds that (3.18) becomes

([an,k,dm , ~  dm,jAn^k  ̂ “ dn,kAm ^

- [An(k),Am(j)] + Xn+mo)[k,jio)_1 (3.20)

and so (using (3.17) to rewrite the last term in (3.20)) 
one can deduce that the relation

[an,k 5m,jl dn+m,[k,j] (3.21)

is equivalent to the condition

5 .A (j) - a .A (k) + [A (k), A (j)l = A n,k mVJ/ m,j nv ' L nv ' 9 nrJ'J n+m([te. j ]) (3.22)

which must now be verified using (3.8a) and (3.9a). One needs 
to consider separately the cases where n,m are of the same or 
different sign. Suppose they are of different sign, i.e. 
n = N (>0) and m = -M (<0), and suppose (N-M)>0. Split 
(3.22) into coefficients of X p and Xq (where p,q>_0):

aN,kA-M(J) + [AN(k).A_M(j)]_p = 0 (3.23a)

-a-M,JAN<k> + [AN(k),A_M (j)]q = A^_u ([k,d]) (3.23b)
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Using (3.8a) and (3.9a), the left side of equation (3.23a) 
becomes

[<1>N *^(^3® ^M-p^  ̂ ^ N , k ^

+ Ej.sotC^^ ^N— )jj-p-r^ ^

= ^:f[(a)ka)“1)N_r,cKQjQ"1)M_p_r(i,“1]

+ (QN,kQ"1)r,(QjQ"1)M-p-r]<|;"1 (using (3.10))

= 0

as required (using (3.12b) and noting that r < N). The left 
side of (3.23b) becomes

,a)kw ^N-q + Sr=q+l^a,k(0 ^N-r'^-M*1̂ ^

= (<o[k,j]u_1)N_M_q (using (3.9a), (3.12a))

= A^_M([k,j])

as required (using (3.8a)). The calculation for (N-M)<0
proceeds along similar lines, noting that for this case
AN_M([k,j]) has the form (3.9a). One can also check the cases
where n,m in (3.22) are of the same sign. (The case n,m ^ 0
was considered in [l]). Having verified (3.22), one can
conclude, from (3.21), that the evolution operators d „ ,±N,k
provide a realization of the Kac-Moody algebra k ® <C[\,X~*].
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Notice that (3.22) is a generalization of the zero 
curvature condition (3.1). Putting (n,k) = (1,E) and 
recalling (3.14), equation (3.22) becomes

axAm(J) “ 8m,jAx + fAx’Am(J)  ̂ = 0 Vm e Z, j e k (3.24)

A less illuminating (but quicker) method of obtaining 
(3.21) to use <\> in place of w in (3.18). For example, using
(3.10), (3.11) and equations (3.5), (3.7) one obtains

= )r—M ~ ^M-r^ » (t*>kc»)

+ - <(._1(ajku )N_r4', (Q jQ_1)M_r]<l-”1 (3.25)

If (N-M)>0 then (3.25) becomes

^ 5N,k,d-M, Es= o ^ a)Ja) ^N-M-s* ŝ̂
-1

-(a)[k,j](o )

= <l>N-M,[k,j]il*
-1 (3.26)

with a similar result for (N-M)<0. One can also check the 
equal sign cases in the same fashion.

The evolution operators d+^ k can be extended in the 
obvious way, simply by replacing k by a general constant 
element g 6 g, i.e.
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An(g) = Xno)gc«) COn,g
—1 n~ ~~1w = X o)gb) 0)n,g.(o

-1

V n 6 Z, g e g (3.27)

One can then verify in the same way as earlier the equation

and so one obtains a realization of the Kac-Moody algebra

not satisfy the zero curvature condition, which is why they 
where not obtained in the original construction (where one 
sought solutions of (3.1)), and so the parameters (±N,m) 
cannot be regarded as true "times". Their interpretation will 
be discussed later.

4. HAMILTONIANS

V n,m ez, g,h e g (3.28)

which is equivalent to the condition

fan,g,am,lJ dn+m,[g,h] (3.29)

g ® (C[\,X *]. Notice that for m € m the quantities A+N(m) do

The Hamiltonians H (g) for the operators 5 arenxo/ n,g
deined by

d f = {f,H (g)} n,g 1 nv&/J (4.1)
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where f is any function, and the Poisson bracket is given by

{fx,f2} = Z/dz(df1/8q “(z).8f2/aqa(z)

- 8f1/aqa(z).8f2/aq“a(z)) (4.2)

Hamilton’s equations take the form

an>gqa = -3Hn (g)/aq_a (4.3a)

an>gq"a = a^(g)/aq“ (4.3b)

Now, the Jacobi identity, together with (4.1) and 
(3.29), implies that (for any function f)

{f{Hn(g),Hm(h)}} = [an>g,am>h]f

5n+m,[g,h]f

= {f»Hn+m([g,h])} Vn,m 6 Z, g,h t g (4.4)

and so

{Hn(g),Hm(h)} = Hn+m([g.h]) + CSQ'l (4.5)

ar Jjwhere C*** is a constant. Since the Hamiltonians are only n ,m J
defined up to addition of constants, it is possible to 
arrange for the Poisson bracket to take the form [3]



{Hn(g),Hm(h)} = Hn+m([g,h]) + n6n _m6g>ho (4.6)

where c is a constant; i.e. the Hamiltonians provide a 
realization of the centrally extended algebra 
g ©  C[>,\_1] © Co.

The Hamiltonian of the GNLS equation is H2(E), so 
equation (4.6) implies that H+^(k) are conserved quantities 
for the GNLS equation, except for H (E) if c*0. Notice also 
that (4.6) and (4.1) imply

d±N,kH0(E) = 0 V n > 0, k 6 k (4.7)

and one can use (3.16a) (with N = 0, k = E) to deduce that

Hq (E) = -iJqV® (4-8)

(summation implied). Next, observe that

/Tr(E[A°,8n(gA°]) = i/(q“igq'a - q ^ , )

= 2i /« Y g * 'a - -2i K > “ <4-9>
if g 6 k (using (4.7),(4.8)). Differentiation of (4.9)

+ nwith respect to q~ gives Hamilton's equations (4.3), so 
that one can use (3.16) to write

HN(g) = -iajTr(Â u)go) 1)N+1 (4.10a)

H_N (g) = ia/Tr(A^cKQgQ"1)N_14,_1) (4.10b)
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where a = 1/2 if g Q k, and a = 1 if g 6 m*

5. LINEARIZATION

For step operators e+a e m, define the formal power
series

r (X) = £* X-(n+1)H (e )±a n=—oj n ±a

= i/Tr(A°((i.Qe±oQ“1<|,"1 - ue^w"1)) (5.1)

(by (4.10)). Then (4.6) and (1.2) imply

8N,Er±a(X) = (r±a(^).HN(E)J = ±i\Nr±a(\) (5.2)

and so r (\) linearizes the equations of motion of the ± a
GNLS hierarchy.

Using the cyclic property of the trace, (5.1) can be 
written as

r±a(X) = i/((0 1(|,"1A°(t,Q) + a - (U 1A°0)) + “) (5.3)

where (X)+a denotes the e_a component of X. Now, the 
restriction to the compact or non-compact form corresponds 
to

(X)a* = + (X) a (5.4)
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so that

{raa),r*(n)} = *Sn— s ^ _ * " n“1n"B (5‘5>

-a _ awhen q = +q Also

{ra(x),rp(li)( = o (5.6)

(since (1.2) implies that [ea»eg] = °)* Equation (5.5) 
shows that the transformation

a
q -►

is not canonical

(5.7)

6. DISCUSSION

Recalling equation (3.14), one notes the following 
special cases of (3.29):

[dx,dn k] = 0 V n 6 Z, k 6  k (6.1a)

t Sn, e ] = ?1®l+n,e £ Z> e±a € S <6-lb)* ±a ±a

The parameters (n,k) could be regarded as "time" variables, 
but (n,e^ ) cannot. Transformations which do not commute with 
translations are regarded, in the context of gauge theories, 
as "internal symmetries" [4]. The mutually commuting class
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{d } can be thought of as the basis of an "internal space". 
n,ea

It is the generator of translations in this space (r ) whicha
linearizes the GNLS system. It should be noted, however, that 
what one is really considering is the phase space of the 
system. The construction seems, in fact, to be a 
generalization of the conventional approach to the SU(2) 
non-linear Schrodinger equation [5], where one considers the 
so-called "monodromy matrix" whose diagonal elements give rise 
to conserved quantities, while the off-diagonal elements lead 
to the linearization of the system.

The use of the gauge transformation w is similar to the 
method used by Olive and Turok for deriving the conserved 
quantities of the Toda equation [6]. In that case, a 
^-independent local gauge transformation was composed with a 
local transformation of the form (1.25) so that the 
transformed gauge potential was a series belonging to k. In 
the present case, as was mentioned earlier, the X-independent 
element _<p is associated with the generalized Heisenberg 
ferromagnet (GHF) [2]. Consider the transformation

Ax -► Ax = (p *AxcJ> + 1c|>x = X(p Êcp (6.2a)

A2 (E) -► At = <p 1A2 (E)(P + <p 14»2>e

= X2cp_1E4; + Xcp”1A %  (6.2b)A

(by (3.10)) and define 

S = (|> Ê tp (6.3)
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Then
(6.4)

and so

[S,SX] = <J,_1[E[A°,E] ]<p = <p-1A°cp (6.5)

i.e the transformed gauge potentials are

Ax (6.6a)

At = X2S + \[S,Sx] (6.6b)

and the zero curvature condition becomes the GHF equation

for the GNLS system are non-local, because of the non-locality 
of the gauge transformations used to construct them.
Non-local conserved quantities were constructed for the

are associated with infinitesimal transformations which form a 
centre-free Kac-Moody algebra. However, the charges 
themselves do not form an algebra [9], and the Kac-Moody 
symmetry is interpreted as a property of the solution space, 
rather than of the phase space. The infinitesimal symmetries 
of the SU(2) non-linear Schrodinger equation were investigated 
in [10]• In that construction, only the "positive" subalgebra

a.s = [s,s 1t L * X X J (6.7)

The conserved quantities which have been constructed

non-linear a-model in [7], and it was shown in [8] that these
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was realized non-trivially.
The linearization of the GNLS system using step 

operators of a Kac-Moody algebra (equation (5.2)) seems to be 
related to the work of the Kyoto group [ 11], who use vertex 
operators to construct soliton solutions for a large class of 
equations. It would be interesting to establish the 
connection of these ideas with the approach of Adler and van 
Moerbeke [12]. Other topics worth pursuing include the 
investigation of the central term in (4.6) (e.g. the 
conditions under which it vanishes), and the quantization of 
the system. For the SU(2) case, the quantization of the 
action-angle variables (i.e. the canonical linearizing 
variables) gives the "Bethe ansatz" creation operators [13].
In the general case, quantization should lead to vertex 
operators of some sort.

The methods which have been presented here can be 
generalized to cover a wide range of integrable systems. This 
will be discussed in a subsequent paper.
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CHAPTER 4: INTEGRABLE DYNAMICAL SYSTEMS AND KAC-MOODY ALGEBRAS
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1. INTRODUCTION

Ever since the work of Zakharov and Shabat [l], it has been 
clear that a wide range of physically important non-linear 
evolution equations in 1+1 dimensions may be written as the 
compatibility condition of a pair of linear equations, i.e. as 
a zero curvature equation

where the "gauge potentials" A , A are matrices, usuallyX b
written as polynomials (or rational functions) in a complex 
parameter \ (which does not appear in the equation of motion) 
with coefficients in a Lie algebra g.

For a given equation of motion, it may be very 
difficult (and will usually be impossible) to obtain a 
zero-curvature representation. A more reasonable approach is 
to try and classify the sort of equations which can arise from
(1.1). If A is fixed, then one may seek A, to arbitrary orderX b
by equating powers of \ to zero in (1.1). This will give rise 
to a hierarchy of equations of motion. The problem of finding 
A^ is made easier by the invariance of (1.1) under a "gauge 
transformation"

[3x + Ax, 3t + At] = 0 (1.1)

(1.2 )

(where y^ = d^y). The matrix coefficients of y belong to the 
Lie group G of g. It may be possible to construct a
transformation A -► a which allows the zero curvaturex x
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condition (1.1) to be solved for a^. Then is obtained via 
the inverse transformation.

In [2,3], this was carried out for the generalized 
non-linear Schrodinger hierarchy [4], in which the gauge 
potentials are polynomials with coefficients in a symmetric 
Lie algebra g = k ©  m. By transforming Ax to a constant 
element, it was possible to obtain a closed expression for A^ 
to any order in powers of \, and so the commutation properties 
of the hierarchy of evolution operators (d^) could be 
investigated. They were found to provide a realization of the 
centre free Kac-Moody algebra k ® <C[\,\ *]. It was then 
possible to construct a further hierarchy of equations so as 
to obtain the full algebra g ®  <C[\,\ ^]. The evolution 
operators corresponding to the subspace m were found not to 
commute with the translation operator a , and were regarded asX
translations in "internal” dimensions, in analogy with the 
situation in gauge field theories [5]. The Hamiltonians of the 
evolution operators were found to provide a classical "current 
algebra" realization of the same algebra. (The central term 
which arose will, in this paper, be seen to vanish). The 
Hamiltonians corresponding to the subalgebra k could then be 
regarded as conserved quantities for the generalized 
non-linear Schrodinger equation, while those corresponding to 
m could be used to linearize the equation of motion. The 
system was thus shown to be completely integrable.

In the present work, constant gauge potentials will be 
used to obtain other polynomial pairs (A ,A.) associated with

X  X

integrable dynamical systems. One begins with a 
non-commutative version of the zero curvature condition
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n0 ,g, - a g [A, »An. g2 = Anl+n2>[gl ’g2]

(1.3)

where dQ (n6Z, g eg) form a centre free Kac-Moody algebra, 
and are regarded as operators of differentiation with respect 
to parameters tfl . One of these parameters (with g an element 
of a Cartan subalgebra h of g) will be chosen as "space", 
labelled x. Those operators 5 .which commute with 5 may be11 j K X
regarded as defining a hierarchy of evolution equations, while 
those which do not are regarded as "internal" translations.
The Hamiltonians will be shown to provide a realization of the 
same Kac-Moody algebra, and the dynamical systems defined by 
an yl (k€Jj) ke completely integrable. The equations of
motion are, in general, non-local. The construction of such 
systems will be described in Section 2. The key ingredient is 
the gauge transformation which takes constant solutions of
(1.3) to-dynamical ones. This is obtained from a "gauge 
equation", which is discussed in detail in Section 3. In 
particular, it is shown that for any choice of x, it is always 
possible to construct a hierarchy of integrable systems.
Also, if Ax is expressed locally in terms of dynamical fields 
and their derivatives at a point, then there will always be a 
hierarchy of local equations of motion (and hence there will 
be local conserved quantities). In Sections 4 and 5, some 
examples will be given of equations of motion which arise from
the construction
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2. METHOD

Let g be a semisimple Lie algebra. The "loop algebra" g' is 
the centre-free Kac-Moody algebra g <& C[\,\ *], where C[\,\ *] 
is the algebra of Laurent polynomials in the complex parameter 
\. g* may be represented as the class of elements 5q (nfcZ, 
ggg), equipped with the bracket

[d ,5 1 = 51 n1>gl> n2 ,g2J ni+n2>[g1>g2] (2.1)

Now one wishes to construct a realization of g* as a
family of differential operators acting on a space F of
functions (dynamical fields). The elements d will ben,g
regarded as defining differentiation (evolution) with respect
to the parameters t . Such a realization will be calledn,g
"dynamical".

If F is equipped with a Poisson bracket ( , } then one
may define the Hamiltonians H F byn,g

d u = {u, H } n,g 1 n,gJ V u eF (2 .2 )

Then the Jacobi identity implies that

{u,{H , H }} = [d ,5 ]u
nl ’ S2 ’ V g2 V g l  V g 2

= dni+n2•[gl+g2]U

tu’ Hn1+n2,[g1,g2]} V u  e F (2.3)
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and so

{Hn, ,g- H 1 - Hnl+n2,[ nl6n1 *~n2 gl,g2
(2.4)

where c&(E is a constant. (The constant term has been written
in its most general form [6], which can always be arrived at
by a suitable redefinition of the Hamiltonians, since they are
only defined up to addition of constants.) This means that for
any dynamical realization there is an associated "Hamiltonian
realization" of the algebra (with central extension, if c*0).

For some peZ, Egg, let t „ be a distinguished« p , a
parameter which will be called the "space dimension", labelled 
x. Without loss of generality, it will be assumed that p is 
positive and E belongs to a Cartan subalgebra h of g. Then g

<V /V OS

may be decomposed as

g = k ® m (2.5)

where k is the centralizer of E (see Appendix). The
os

collection

T = {t : nej, kek} (2.6)U y JV ^

will be called the "evolution space". Any element of T may be
singled out and regarded as the "time dimension", labelled t.
Then the manifold spanned by (x,t) will be called the
"physical space", and the operator 5^ will define the equation
of motion for any function u(x,t) F. The whole class d .n | k
(where t , £T) defines a collection of equations of motion,Q i K
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which will be referred to as the ’’dynamical equations”. The 
equations defined by the operators a „ (ng Z) will be calledn i Hi
the "central hierarchy”, while those defined by d (N>0). _ N, E —
will be called the "fundamental hierarchy".

The collection

1 “ n6Z, mem} (2.7)— n,m ~ ■*

consists of parameters whose evolution operators d do notn, m
commute with the spatial translation operator 5^ (i.e.
momentum is not conserved for the evolution equations). 1̂ will
be called the "internal" space, and the operators 5n m will be
regarded as defining translations in the "internal"
(non-physical) dimensions tQ For all the dynamical
equations, momentum (H „) will be conserved. In particular,P »**
this means that

0 = a-p,EHp,E = fHp(E> H-p,E) " *C (2 .8 )

(from (2.4)), and so the central term actually vanishes (if 
P*0).

Next notice that (2.4) implies

tHn,k ’ V e ) = 0 V n,m £ Z, k £ k  (2.9)

i.e. the Hamiltonians H , are conserved quantities for then,k
equations of the central hierarchy. The subset consisting of 
H . (n€Z, h£h) forms a maximal involutive class of
conserved quantities. Furthermore, for any step operator



90

ea em, one may define

ra Z -nHn, e (2 .10)

(where \ is a formal parameter). Then, using (2.4) (and the
notation [E,e ] = (a.E)e ),L a a

a „r = z m_  \n, E a m=-®
-m

(Hm,e Hn , E

= -e” X “(a.E)Hm=-°° m+n, ea

= -\n(o.E)ra V n e X ,  ea e m  (2 .1 1 )

and so the equations of motion are linearized.
Eqs.(2.9),(2.11) show that the equations of the central
hierarchy are completely integrable. For the equations
defined by a . (n6Z, h eh, h*E), there may be fewern, n
conserved quantities (i.e. only those of the maximal
involutive class), but the linearization (2.11) still applies.
For the equations defined by aQ e (n£Z, e 6k,e^h), there are
still infinitely many conserved quantities (H : m£Z), butm, e
the equations are not linearized by (2.10).

In order to construct a dynamical realization, one 
begins by considering the equation

an. ]2

= A
ni+n2-[gi-e2]

(2 .12)
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for an unknown class of "potentials”  ̂6 F 0 g ® <C[\,\ *]. 
(Notice that when [g^,g2] - 0, Eq.(2.12) becomes a zero 
curvature condition).

One seeks solutions A for (2.12). The simplestn,g
example is the constant solution

A ^ nAn,g X g (2.13)

Now consider the "gauge transformation"

An,g * yAn,gY " Yn,gY An,g (2.14)

where y belongs to the loop group, with coefficients in F (and
y Ha y). Making use of the identities n, g ft > g

. , -i, _ -i -i
an>g(Y ) - -Y Yn>gY (2.15a)

dn,g(yAlr = ^Yn,gY ±9 yAy X] + Ydn,gAy *-1 . -1 -1 (2.15b)

Eq.(2.12) is transformed to

, a (y)
nl’sl n2’e2

a a (y) + [a (y) a (y) 1
n2’g2 nl’gl nl’gl' n2’g2

= A(y)n1+n2,[g1,g2] (2 .16)

i.e. the equation (2.12) is form-invariant under (2.14). 
Therefore, using (2.13) in (2.14), a solution is

a . n -1
An,g = X YgY - Y

-1
n,g (2.17)
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where y is arbitrary. Now choose two possible forms:

y = 4>a) = 4>expz"=i\ nwn (2.18a)

® , n.y 2 =  Y Q  =  Y e x p E Q = 1 \ Q q (2.18b)

where <J>,Y are independent of X and g« With these
two choices, A will be an infinite series in either n,g
descending or ascending powers.

Now impose the condition that A is the same forn,g
either choice of y. Then A must be a polynomial of degree nn,g
in only positive (negative) powers of X if n is positive 
(negative). Let N be a positive integer. Then (using (2.15a))

N, g
-1 -1 -1-1

" ‘’’N.g<1> “ gw ^

-1 -1 -1-1 — Y„ „ N,g* " fQN,gQ 1

-1

-1

(2.19a)

(2.19b)

= ZN XnAn " En=(r AN,g (2.19c)

Equating coefficients of powers of X, one obtains 

(uN, gu_1 = (“g<*>-1)N+n ^n>0 (2.20a)

. „N , n (/ -1 -1 . -1
AN,g= zn=0x <l'("gl0 )N-n<̂ " "'NV*1N , g (2.20b)

( V g fi-1>n = (QgQ 1}n-N " f~lAN «r»N,g V n>0 (2.20c)

YN>gY_1 = ^N, g^ 1 " ^(a)gtl) ^ N>0 (2.20d)
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*Nfg* 1 = ^N,g^ 1 “ *<wg“ 1)N(p 1 N>0 (2.20d)

Y0>gY_1 = “ m ”1 + VS*"1 (2.20e)

where (f(oo)) denotes the coefficient of \ n (=0 if n<0) and n
(f(Q))n denotes the coefficient of \n (=0 if n<0). Repeating 
the process with -N in (2.19), one obtains

where A

(Q-N,gQ n̂ (QgQ ^N+n V n>0 (2.21a)

A-N,g - - f-N,g'r
1 (2.21b)

<“-N,g“_1)n = (“8u_1)n_N - 4- A-N(g4> V n>0 (2.21c)

’t’-N,g?‘1 = ^-N.gl'"1 + ^(OgQ'1) ^ " 1 V N>0 (2.21d)

nXT denotes the coefficient of X n (=0 if n>N). -N,g
Now write x = t . From Eq.(2.20), one hasP »h

(w,“_1)„ = (idEoi-1) . V n>0v x 'n p+n

Ax = Zn=0xD'1'(a,E“":l)p-nll,":L ■ ^x^"1

( Q Q -1 )„ = (QEQ_1)n „ - ?_1a N  V n>0v x n n— p x

(2.22a)

(2.22b)

(2.22c)

Eq.(2.22a) defines the generators as functions of x. The
m

coefficients ,..., ;w~ (where the superscript is used to
denote the m component), which appear in Ax, are not uniquely
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determined by (2.22a), and will be called the "dynamical 
sector". It will be seen that the dynamical sector may be 
chosen so that o)n is determined to all orders by (2.22a). c|> is 
undetermined, and may be chosen arbitrarily. Y, also, is not 
explicitly determined, but is fixed by (2.20d), (2.20e), 
(2.21d). The generators Qn are determined by (2.22c) in terms 
of Y and the dynamical sector.

The evolution of <\> is subject to the consistency 
condition

g. (cj, 1(|,
n2 ,g2) - a, g. (4» no , g«

u  V g <\> 1(j;
n2,g2] =

<\> 1(pn1+n2,[g1,g2] (2.23)

i.e. cj; (l) is a X-independent solution of Eq.(2.12). If c|> is“ > O
chosen to be the identity, then (from (2.20d,e),(2.21d)) Y is 
fixed by

-(wgw )N V N>0 (2.24a)

-1 -1
*o,g* " YgY (2.24b)

'•'-N.g*'1 = (̂Qg£J_1)Nf-1 V N>0 (2.24c)

This case will be called the "basic gauge". Now, since (|> „n , g

is a solution of Eq.(2.12), one can choose

4-'%n g = A<*>° VneE ,  geiS (2.25)
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where A is a solution in any gauge <j>; i.e. (from (2.20b), n t 6
(2.21b,d) with <J> replaced by <t>)

-1 , -L -1 <l> <l>N>g = <Kwgw )N«t> *N,g* (2.26a)

* 1(̂ “N, g = ~^-N,g^ 1 V n >o (2.26b)

Letting <J> be the basic gauge (i.e. 4>=1), one obtains the 
"principal gauge":

'•’"^N.g = (“g“ \ \/n >0 (2.27a)

^-N.g = 0 Vn>0 (2.27b)

this gauge, Eqs.(2.20d,e) ,(2.21d) become

f_1fN(g = 0 V N>0 (2.28a)

f_1,fr-N>g = (QgQ_1)N V N>_0 (2.28b)

(Letting <j> be the principal gauge in (2.26), one returns to 
the basic gauge).

One may also fix <j> by choosing <J> <\> * as a function of 
the dynamical sector. Then the dynamical equations for <\> may 
be written as

<\> ” 5 ldn,k^x^ (2.29)

which satisfies Eq.(2.23) for g ek. (In general, one cannot
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extend the non-local definition (2.29) to the internal

since 5x does not commute with these translations). Gauges for

called "local gauges" (although <\> itself is a non-local gauge 
transformation).

3. THE GAUGE EQUATIONS

It will now be shown how a> and Q are determined from 
the "gauge equations" (2.22a) , (2.22 c)

for all n>0. Recalling the definitions (2.18)^ one can expand 
in powers of X. to obtain the identities

translations <\> m (m 6 m). Eq.(2.23) may no longer hold,

which (\> 1(|»N g (the fundamental hierarchy) is local will be

(3.1)

(Q Q_1)„ = (QEQ-1) - Y 1(J>(o)Ea)~1) n <\>~lySX x 'n v ' n- p ' y p- nY (3.2)

“•1 ^ r»— 11 r-1 r

(3.3a)

(wgw"1)n “ (r!)-1Z
(3.3b)

(and similarly for Q). If p^O, then (3.1),(3.2) become (using
(3.3))
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a w x n E] (3.4a)

a Qx n [Qn» (3.4b)

i.e. one can choose w = Q = 0  for all n. Henceforth, it willn n
be assumed that p>l.

Putting n^l in (3.2), one obtains (using (3.3) again)

axQl

dxQl

-Y S(wEo) V p>i (3.5a)

E - Y_1c|,EcJ;”1Y p=i (3.5b)

and so Q^ is determined (non-locally) in terms of u),<j;,Y. Now 
suppose that all are determined. Then (3.2) gives

5 Q + Ei(terms in Q v ) x n  1 j <n

= Z2(terms in ^j<n) “ Y <̂KwEu> *)p_n4>

and so is determined to all orders in terms of u)f<p,Y.
For the gauge equation (3.1), the situation is more 

complicated. First, let p=l. Then, putting n=l in Eq.(3.1)

(3.6)

axw 1 = [ w2 »E ] + l/2[a)1[(01,E]] (3.7)

This may be split into k and m components (using (A.5)):

k m k
axa)~ = l/2[a)~[(o1 ,E] (3.8a)
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m k m m
[u2,E] = axiô  - l/2[io~[o)1(E]] - l/2[io~[u1,E]]~ (3.8b)

kEq. (3.8a) determines u>~ (non-locally) in terms of the
m m

dynamical sector Then Wg is determined by Eq.(3.8b). Now
m

suppose that , . . . , ;w~ are determined. Then, using (3.3), 
Eq.(3.1) (with p=l) becomes

5xwn + E1 = [“n+l’E] + 1/2[wn[a)l,E^  + 1/2[a,i[a)n,E^  + Z2
(3.9)

(where Zj are sums of commutators involving a3m<n) • Then the k 
and m components are

k m k m k
®x“n = + + z3 (3.10a)

m m m
[Wn+1,E  ̂ = axwn " 1/2[b)n[(‘,i*E]]~ “ 1/2[a)i[wn»E]] + z 4

(3.10b)

k m
Eq.(3.10a) determines w~ non-locally. Then w~+  ̂ is determined 
by Eq. (3.10b). So o)Q is determined to all orders.

Now consider the case p=2. Putting n=l in Eq.(3.1), the 
k component is

k m k m k k
dx<D~ = 1/2[w~[o)2,E]]~ + l/2[a>2[w1 ,E] ]~ + l/6[a)1[a)1[a)1 ,E] ] ]~

(3.11)

m
One is free to choose the dynamical sector (w^tog), subject
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to Eq.(3.11). (One such choice will be discussed later on).
m

Now suppose that are determined in terms of the
dynamical sector. Then the m component of Eq.(3.1) with p~2, 
n=N-l takes the form

k
[a)N+l,̂ -l + ® H  = ^1 (3.12)

m
(where Ej involves the coefficients %  J ) • Now put n=N in 
Eq.(3.1) (with p=2). The k component gives

k m  k m  k
axu>N = + 1/2[“N+lt“l’E^ ~

k m  k m k k
+ l/StcoJJfcô fâ  ,E] ] ]~ + l/6[a)~[a)~[a)1 ,E] ] ]~ + Eg (3.13)

Substituting (3.12) and using (A.8), this can be rewritten

k m k k k m  k
dxwN = “1/3[a)i[a)N^a)l,E^]~ + 1/6[a)N^a)lfa,l,E^  Z3 (3‘14)

= E3 (3.15)

k m
using (A. 10). This determines (oJJ, and then coJJ+1 is determined
by (3.12). So co is determined to all orders.

For p>2, the sort of cancellation which appears in
(3.14) will not occur, and one must choose the dynamical
sector so that co may be determined to all orders in terms ofn
c0j<n* Such a choice will not be unique. For example, for any 
p>2 let q be a positive integer such that 2q<p-l, and write

q 2r + a (3.16)
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where a {0,l}. Now choose

(i) 4 , . . . (i) ii p-q-i = o

m m
tl) , . . . , (l) 4p-q * * p-r-1 = 0

(3.17a)

(3.17b)

One must check the consistency of (3.17). For l_<n<p the gauge 
equation (3.1) becomes (using (3.3))

8x“n = K +p’E] + 1/22j = p - r K W “j’E ^ (3.18)

For l<^n£p-q-r-l this reduces to

[ co . , E 1 =L n+p’ J 0 (3.19)

m m
i.e. a>~+1,•••’w2p-q-r-l = °* Then» for P-Q-r<n<p-q-l, 
Eq.(3.18) gives

U  . ,E] = -1/2S^^ .[L n+p* J ' j=p~rL n+p-jLUj,E]] (3.20)

The k component of this equation is zero, by (3.17b). So 
m m
^p-q-r* • • • ,a)2p-q-l are nOW ^nown terms ^p-q* ’ * * ,wp-l 

For p-q<n<p-r-l, the k component of Eq.(3.18) is

x^n “ 1/2Zj=p-rK+p-j[“j’E^
m

(3.21)

(using
m

(3.17)). This determines oj , ..p-q
m

. . The m component isp-1 ~

a) „ in terms of p-r-1
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[co A ,E] = -l/2ZI?+q [a>~ . [w . ,E] ]L n+p’ J ' j=p-rL n+p-j1 j* JJ

, m m
- 1/2Z* r [w~ . [to . ,E] ]~J=p-rL n+p-jL j* JJ (3.22)

For p-r<n<p the k component of (3.18) becomes (using 
(3.17),(3.19))

k m k
a w~ = 1/2S1} [« .[w .,e ]]x n ' j=p-rL n+p-jL j* JJ (3.23)

k k m m
and so <o~_r,.. •, <o~ are determined. Then a)2 p_q,•••>w2p-r-l are
determined by (3.22).

m m
So far, , • • •, (Op, (0p_^ »• • • »̂ 2p“r~*l been

m m
consistently determined in terms of (j) ,..., u (which may beK A r'
regarded as the dynamical fields of the system). Now suppose 

m m
that •’ * ,a)N+p-r-2 have been determined (where N>p+1).
The k component of the gauge equation (3.1) (with n=N) may be 
written as

ax“N = 1/2Sj=p-q[“j[“N+p-j’E^ ~  + 2(termS in “j<H> <3‘24>

and so (o~ is determined. The m component of (3.1) with n=N-r-l 
has the form

[“N+p-r-1’E ̂ _1/2Zj=p-qt“j^“N+p-r-1-j’E ̂
m

+ E(terms in to . .XT) J <N (3.25)

m
and so to~ is determined. Hence (o is determined to allN+p-r-1 n
orders. So for any p, it is possible to choose the dynamical
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sector so that co may be determined.
k

The gauge equation (3.1) determines w~ non-locally, and 
so one would expect the equations of motion (2.20) to be 
non-local. This is true in general, but for systems in which 
the dynamical sector is local, the fundamental hierarchy are 
in fact local equations of motion (in any local gauge). To 
show this, let w be of the form

® . -nw = expzn=1\ wn

and define the transformed gauge potentials

-1. . -1 aM „ = w w + w w„n,g n,g n,

Now choose

(3.26)

(3.27)

w = 0) l<n<p-l (3.28a)n n ---

m m
w = a) (3.28b)P P

i.e. w,w coincide on the dynamical sector. Then (recalling 
(2.22b), and letting 4> be the basic gauge), a takes the form

a = XPE + s* ,\-na”n (3.29)x n=l x x y

while the transformed potentials of the fundamental hierarchy 
are of the form

aN,E
NX E + ZN-p-1n=-<» . n X anN, E (3.30)
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(using (2.20b) with 4»=l,g=E). Now specify the remaining
generators of w by choosing a^^k, i. e

and so

[wn+p>E] = E(terms in wJ<n+p) (3.32)

m
Then w~ (n>p) is locally defined to all orders in terms of the

k
dynamical sector. w~ (n>p) is left undetermined, and will be 
chosen to vanish.

In the gauge (3.27), the equations of motion of the 
fundamental hierarchy have the representation

(from Eq.(2.12)). It will now be shown that a^ ^ may actually 
be written as

This is certainly the case if N<p (from (3.30)). Suppose N>p. 
Substituting (3.29),(3.30), one may write the coefficient of

(3.33)

(3.34)

\N-n in (3.33) as

i. e
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[E, a”"P"n] = 0 l<n<p (3.36a)

- N-n , r_ N-p-n-> n-p-1 r -r N-n+r-i _ n ...
dxaN,E + aN,E 1 + Zr=l tax * aN,E  ̂ 0 p

(3.36b)

Eq. (3.36 a) shows that aJJ ^P...,a^ P * k. Then the m component 
of Eq.(3.36b) becomes

rr- „N-p-n-| __ . , N-n*~ _n-2p-lr -r N-n+r *~i
LE»aN>E J 5x(aN,E) “ Zr=l Lax »<aN,E ) -* P 1-n-N

i.e.

(3.37)

[E, aJ g Q] = 0  p+1<n<min(N,2p) (3.38)

and so the upper bound on the summation in (3.37) is reduced 
to n-3p-l. Repeating until min(N,mp) * N for some m, one finds 
that

n
aN,E -p<n<N-p-l (3.39)

Then the k component of Eq.(3.36b) is

* N-n 
dxaN,E = _vn-P”1ra‘r aN~n+rl Zr=l Lax » aN,E J p+l<n<N (3.40)

Putting n=p+l, one has
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8xaN,E 0 (3-41)

so one may choose = 0. Then,, by induction, Eq.(3.40)
allows one to choose

N-n
aN,E 0 p+l_<n<N (3.42)

and so the assertion (3.34) is proved. Now invert the gauge 
transformation (3.27) to obtain

AN,E = WaN,EW “ WN,EW

=\NwEw -1 + 2n=1^'nwa"“Ew_1 - w ^ w " 1 (3.43)

Since ^ is a polynomial in only positive powers of X, one 
may equate coefficients to get

AN,E = sn=0^ ŵEw ^N-n (3.44a)

=  S^_0ln(wEci)-1)N_n V n >0 (3.44b)

(from (2.20b) with <|>=1), and so

wEw = wEo) (3.45)

(where the constants of integration in wEco * are set to zero). 
The equations of motion of the fundamental hierarchy may be 
represented as
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d A._ „ x N,E ' aN,EAx + CA; an ,e -I ° (3.46)

(from Eq.(2.12)). If the dynamical sector is local, then w 
(and hence AM _ (3.44a)) will be local, and so the equations 
of motion (3.46) are local. The associated Hamiltonian 
realization will consist of non-local Hamiltonians with a 
sub-class of local quantities HN

4. REALIZATIONS WITH p = 1

In the basic gauge, with p=l, the gauge potential (2.22b) is

A = \E + [w ,E] (4.1)

For G=SU(2), this defines the AKNS system [7]. Since the 
Cartan subalgebra is one-dimensional, the equations of motion 
all belong to the central hierarchy.

Now, from (2.21c) with N=n=l and <J>=1,

m  ̂ m
&—l.E^l = (“A-1,E*

-1 5= (-YEY ) (4.2)

(using (2.21b). In the basic gauge, one also has ((2.24a) with 
N=1,g=E)

V
-1 = -[<*>!,E] (4.3)
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so that the equation of motion may be rewritten (with

V  aS

b t C ^ ’1) = 1*E1 (4.4)

For G=SU(2), choose

E ■ ' / " ( o  -?)

[•i.'i-U S)

(4.5)

(4.6)

where u is a real field. Then (noting (4.3)), Y may be written 
as

Y
f exp(ip)cos(a/2) exp(-ip)sin(a/2)
^-exp(ip)sin(a/2) exp(-ip)cos(a/2)

where a =2u and p =0. Then Eq (4.4) becomes x x

(4.7)

a , = sina (4.8)xt

which is the sine-Gordon equation.
Now consider the equation of motion with d^= g 

Using (2.20a) one has

at“i = (w2, Eoj ^)^ ® (toEu ^)g (4.9)

and, since d = d- „, Eq.(2.20a) gives x l, hi
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(ojEoj *>2 = (wxto 1)2

= 8 x 0)2  + i/2[Ul, a ^ ] (4.10)

(from Eq.(3.3a)). Then

m
at“i

m m m mk m  m k
axw2 + 1/2[a)i» ax“i] + 1/2[od~, + l/2[a)~, ^x^ ]

(4.11)

This may be evaluated using (3.8). One obtains

m m m m mat [o>1 ,E] = axx0)~ - [9xo>i[<o1.E]]~ - l/2[E[u~[W~[u.1(E]]]] (4.12)

For G=SU(2), one may choose

(4.13a)

(4.13b)

If g is restricted to the compact or non-compact real form 
*(r=±q ) then Eq.(4.12) becomes

iqt (4.14)

which is the non-linear Schrodinger equation. For a symmetric 
Lie algebra g = k 0 m  the middle term of Eq.(4.12) will#V /V /v

vanish, and the equation of motion (when g is restricted to 
the compact or non-compact real form is the matrix form of the
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generalized non-linear Schrodinger equation discussed in [4]. 
The Hamiltonian realization associated with this system was 
constructed in [2,3].

Now consider the gauge choice K (the Lie group of k). 
Then (2.22b) with p=l is

(4.15)

For G=SU(2), choose

(4.16aF;

(4.16b)

(4.16c)

For at= a2 E write

(4.17)

The consistency condition (2.23) on cjj becomes

ut v
X

and one also has (using (2.15b))

(4.18)
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= 1> 1 ]E] + [cpd^.lo1, E] (4.19)

1_ 1 1 ® 1 = [<l>t<l> J-[(Ho14>- ,E] ] - [axC<Px4>_ ). ]

-1 1 111 “I+ [4-x<l> , <l-u~<P ]] (4.20)

(using (A.7),(4.12),(4.16b), and using (2.15b) to rewrite
5 -14>dxx(Ol4> ). Substituting (4.16) , (4.17), this becomes

v = ux + u2 (4.21)

Then the equation of motion is given by (4.18)

u, = u + 2uu (4.22)t X X  X  v J

which is the Burgers equation. <\> plays the rOle of the 
Cole-Hopf transformation [8,9].

In the principal gauge, with p=l, the gauge potential 
is

Ax - (4.23)

(from (2.22b),(2.27a)). The equation of motion with 5^= d 
is

&t((l,E4» ) [<1̂2 » 4>E(p ] (by (2.15b))

= cj> [ (coEco 1 ) 2 , E ] (1- 1 (by (2.27a))
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= ^[5XC01»E]cp 1 (by (2.22a))

= <|.a3C(<|,"14.x)<l."1 (by (2.27a))

= SjcCI-x1!--1) (by (2.15a)) (4.24)

Now let g = k ©  m be a symmetric algebra, with 
2 -1(adE) * -I on m. Then (since c|> by (2.27a)), Eq.(4.24)

may be rewritten

dj.(<|>E4» ^) = -dx(<|>[[<!> *4>x, E], E ](p *)

= dx[<pE4> 1, dx(4»Et|) 1)] (4.25)

Writing ĉEĉ 1 = S, this becomes

dtS = [S’ Sxx] (4,26)

which is the generalized Heisenberg ferromagnet equation [4]. 
The gauge equivalence of the non-linear Schrodinger and 
Heisenberg ferromagnet equations was first demonstrated in 
[ 10].

5. REALIZATIONS WITH p = 2

It was shown in Section 3 (Eq (3.11)) that for p-2 the 
dynamical sector must satisfy
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k m k m k k
&xo>~ = 1/2[w j[w2,E]]~ + 1/2[o)2[o)1,E]]~ + l/6[a>1 [o>1 [w1 ,E] ] ]~

(5.1)

Let g = k © m be a symmetric algebra 2with (adE) = -I on m.
Then one may choose

k on3 (5.2a)

m
“2 = 0 (5.2tf;

Now one may consistently choose

a) € m (n odd) (5.3a)n ~

(n even) (5.3b)

To see why this is so, note that the commutation relations

[k, k] C k (5.4a)

[£> 5 ] C 5 (5.4b)

[“• 5 ] C  k (5.4c)

may be realized by k ■> {2n}, m ■> (2n+l} (n£Z) and [a,b] 
a+b. Then by induction on n in (3.3) one obtains
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(O) (0 £v \i yn
m (n odd) 
k (n even)/N/ ' '

(wkw )̂
m (n odd) 
k (n even) V k 6 k

(a}ma)”1)n €
k (n odd) 
m (n even) v m e m

and so the gauge equation

(“x“~1)n = <uEo’ >n+2

is consistent. Then (5.5) and (2.20a) imply that

&N kw ”  ̂ (N>0 odd, k 6 k)

d,T a) = 0 (N>0 even, mem)N, m — ~

(5.5af;

(5.5b)

(5.5c)

(5.6)

(5.7a)

(5.7b)

Now let cj>eK. Then the gauge potential (2.22b), with the 
choice (5.2), becomes

Ax= +  \ [ c|hi)̂ <|> ^,E] + 1/2[4>o)̂ 4> X,E]] --1 -1 -1 (5.8)

Now consider the equation of motion with d = b . FromZ 4, ri
(2.20a)

5twi = (wEw ^)5 = (wxw 1)3 (using (2.22a))

“ &xw3 + ^2* 5xWl̂  + 1/2ta)i» 5xa)2-l

+ l/6[co1[u)1, dxw1]] (from (3.3a)) (5.9)
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To obtain an explicit expression, w2 and must be determined 
from the gauge equation (5.6). Putting n-1, one obtains

[w3,E] = 5xw1 -1/2[o)2[w 1,E] ] - l/6[u)1[a>1[a)1,E] ] ] (5.10)

while n=2 gives (using (A.8))

&xW2 = [^[^'E]] + 1/6[w2[“1[w 1,E] ] ] +l/6[w1[(D2[a)1,E] ] ]

+l/24[u)1[a)1[(o1[to1,E]]]] - l/2[a>1, d ^ ]  (5.11)

Substituting (5.10) and using (A.10) this becomes

axa)2 = ax“i] ” l/8[a)1[a)1[a)1[tD1,E] ] ]] (5.12)

Then the equation of motion (5.9) is

dtwi - [E, ^xx^i] + 2/3[u1[«1f V l l ]  “ l/5ax[E[aj1[a)1[w1,E]

" 1/8[a)1[a)1[co1[a)1[o)1,E]]]]] (5.13)

Now, (using (2.15b), (A.7)),

&tAx = dt[(Pa)1c|> 1, E]

= 1[cpa)1(|i *, E] ] + [(Kdtw1)4» 1, E] (5.14)

Substituting (5.13), and using (2.15b) to rewrite 
this becomes
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a tA x = t v " 1 ' A x] + tE > axxA x] + [a x (<l'x<,’- 1 ) [A x ’E ^

+ 2[4,x(|,_1[axA^,E]] - [4-x<1»-1[4>x4«_1[Â ,E] ] ]

+ 2/3[A^[a £, bxA^]] - l/6ax[E[A^[A^[A^,E]]]]

+ l / 6 t V _ 1 t E[ Ax [ Ax [ Ax ’ E] ] ^ ]  + 2 / 3 t Ax t Ax [ Ax>

- ^SfAx^x^x^x^x’®]]]^ (5.15)

= [l^-T1, Ax] + F (5.16)

Now choose

4>x*_1 = “tAxtAx,E]] (5.17)

Then (̂cj; is defined by the consistency condition

-1 (5.18)

which may be rewritten using (5.16) (and (A.7,8,10)) as

ax(<|>t!V_1) = 2a[atA^[A^,E]] - <x[<J,tq, V ^ ^ . E ] ]

= 2a[F[Ax,E]] (5.19)

This becomes (using (A.7,8,12,13,16))
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9x(<l>t4< 1) = 2a[A^, 8XXA^] + (4a2+a) [ A*[ 8XA^[ A*[Ax, E] ] ] ]

+ (4a2-2a)[A^[A^[dxA^[A^,E]]]] (5.20)

i.e. (using (A.15))

<l't4>_1 = 2 a [ A ^ ( 9XA^] + (o2 + «/4)[A^[Ax [Ax [A^,E] ]] ]

+ (4a2 - 2a)a_1[Ax[A^[axA^[A^,E]]]] (5.21)

Substituting this and (5.17) into (5.15) gives the equation of 
motion:

atAx = tE> axxAxl + <2‘ - 4“2)[Ax>a_1[Ax[Ax[9xAx[Ax>E]]]]

+ l/2[E[axAx[Ax[Ax,E]]]] + (4a - 1) [ E[ A*[ 3xA*[ A4 , E ] ] ] ]

+ (a/4 — 1/8)[Ax[Ax[A^[A^[Ax ,E ]]]]] (5.22)

(where (A.12,13,16) have been used). This equation becomes 
local for two values of a. Putting a=0 (the basic gauge) gives 
a quintic non-linear Schrodinger equation. Putting a = 1/2 
(the principal gauge), one obtains

StAx = tE> 8xxAx] + l/2ax[E[A^ [ A^E]]]] (5.23)

When g is restricted to the compact or non-compact real form, 
the components of (5.23) give the derivative non-linear 
Schrodinger equation of Fordy [11].
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For g = sl(2,C), one can write

qe+ + re (5.24)

Then one can check that for this case

and so (5.20) is local for all a. The equation of motion
(5.22) is then

atA^ = [E, axxA^] - (a - 1/2)(a - 1/4) [ A*[A* |>1[ A*[A*, E] ] ] ] ]

+ 1/2[E[3XAX[AX[AX,E]]]] + (4a - 1)[E[A^[aXA^[A^,E]]]] (5.26)

The restriction to the compact or non-compact real form 
*(r=±q ) gives the derivative non-linear Schrodinger equation 

of Chen et al [12] •
The gauge potentials of the zero curvature 

representation are easily found. Substituting (5.17) into
(5.8) gives

Putting a = 1/4, this becomes

8tAx = tE > 3xx4 ]  + l/2[E[axA ^ [ A ^ . E ] ] ] ] (5.27)

Ax = X2E + \AX + (1/2 - °0[Ax[Ax, E]] (5.28)

while from (2.20b)
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4 3 —1 2 ”1 ”1= \ E + \ ,E] + \ [c|>u)̂4> [(|>ŵ<|> ,E]]

+ k<K&xWj_)<P  ̂ + ^(^^2 + l/2[w^, axo)̂ ])(p * “ (\>t <\>  ̂ (5.29)

(where (5.6) has been used). This becomes (using
(5.11),(5.17),(5.21))

At = \4E + X3A4 + K2[A^[A^,E]]

+ \([E, axA^] + a[E[A^[A^[A^,E]]]])

+ (l-2a)[>l, 9XAX] - (a2 - 3a/4 + 1/8)[A^[A^[A^[A4,E]]]]

- (4a2- 2a)a_1[A^[A^[axA^[A4,E]]]] (5.30)

6. DISCUSSION

Various authors have used gauge invariance to investigate the 
conserved quantities of integrable dynamical systems, such as 
the nonlinear sigma model in [13] (where the gauge potentials 
are rational functions of \), and the Toda equation in [14]. 
The gauge transformation w (3.31) is a generalization of the 
local transformation used in [14]. Non-local conserved 
quantities were constructed for the non-linear sigma model in 
[15], and these are associated with infinitesimal 
transformations which realize the "positive half" of a 
centre-free Kac-Moody algebra [16]. However, the charges 
themselves do not form an algebra [17]. The infinitesimal
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symmetries of the SU(2) non-linear Schrodinger equation were 
investigated in [18], using the gauge transformation to the 
Heisenberg ferromagnet. Only the "positive" subalgebra was 
realized non-trivially, since the gauge transformation is in 
fact the principal gauge (4.23), which is trivial in the 
negative part of the algebra (2.27b).

Much work has been done by the Kyoto group [19] on the 
construction of soliton solutions for non-linear dynamical 
systems using vertex operators. The construction of solitons 
within the formalism of this paper, and the connection with 
the work of the Japanese authors, will be dealt with in a 
subsequent paper.

Another topic which will be investigated further is the 
construction of the Hamiltonian realizations. One must first 
define the Poisson bracket between matrix elements of the 
dynamical sector (with different values of the spectral 
parameter), i.e.

{Ax(xl’Xl} ®  Ax(x2’X2^ (6,1)

(where the notation of [20] is used). Such objects have been 
studied in connection with the "r-matrix" [21] and Yang-Baxter 
equation [22].
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APPENDIX

Let | be a semisimple Lie algebra over a field P of 
characteristic zero. (By "semisimple" it is meant that g has a 
symmetric bilinear form ( , ) which is non-degenerate). A 
Cartan subalgebra of g is a maximal abelian subalgebra h with 
the property that, for all h€h, adh is a semisimple 
endomorphism of g. (Recall that (adh)g = [h,g], and a 
semisimple endomorphism is one for which the roots of the 
minimal polynomial are all distinct). Every semisimple Lie 
algebra has at least one Cartan subalgebra. Choose one, and 
let E be an element of it. Define

>S = [E .s] = °} (A.la)

I = (geg: (adE)ng = 0} (A.lb)

m = [E.fc] (A.lc)

Being semisimple, adE is diagonalizable over P (or its 
algebraic closure), and hence k = 1. Then k H m  - 0. Also, the 
fact that g is semisimple, together with the relation 
0 = (g,[k,E]) = ([E,g],k), implies that dim k + dim m = dim g; 
i.e. g = k © m (direct sum as vector spaces). If there exist 
k€k, m e m  such that [k,m]ek (*0), then (writing m = [E,mf])

0 = [E[k[E,m’]]] = [E[E[k,m’]]] (A.2)

(by the Jacobi identity) and so
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0 = (g,[E[E[k,mf]]]) = ([g,E],[E[k,m’]]) (A.3)

However,

(k,[E[k,m’]]) = ([k,E],[k,m']) = 0 (A.4)

i.e. [E[k,mf]] = [k,m] is orthogonal to g, which contradicts 
the fact that g is semisimple. So one has the relations

(the latter follows from the Jacobi identity on [E[k,k]]). 
The corresponding Lie group G/K is called a reductive 
homogeneous space. For certain algebras it is possible to 
choose E so that one has the additional relation

then G/K is called a symmetric space, and g is called a
symmetric Lie algebra. An important example arises when adE is

2a complex structure on m (i.e. (adE) = -I on m). For 
further details, see [23].

In the general (reductive) case, it is clear (using the 
Jacobi identity) that

[k,m]cm [k,k] c k (A.5)

[m,m] c k (A.6)

[k[m,E]] = [[k, m],E]]

k
[m1[m2,E]]~ = [m2[m1,E]

k
(A.8)

(where the superscript indicates the k component). Also, for 
all k £ k, ra 6 m,
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[k[m[m,E]]] = [m[k[m,E]]] - [[m,E],[k,m]]

= 2[m[k[m,E]]] + [E[m[k,m]]] (A.9)

1 • 6 •

k k k
[k[m[m,E]]]~ = 2[m[k[m,E]]]~ = 2[[E,m],[k,m]]~ (A.10)

From now on it is assumed that E can be (and is) chosen 
2 2so that (adE) = k (constant) on m (i.e. the symmetric case). 

Notice that

-K2[m1>m, (A.11)

Also

[m[E[m[m[m,E]]]]] = [m[[m[m,E]],[m,E]]] (by (A.7))

= l/2[[m[m,E]],[m[m,E]]] (by (A.10)) 

= 0 (A.12)

and

[m[E[m[m[m[m[m,E]]]]]]]

= [m[[E,m],[m[m[m[m,E]]]]]] (by (A.7))

= [m[[[E,m]m],[m[m[m,E]]]] + [m[m[[E,m],[m[m[m,E]]]]]]

(by the Jacobi identity)



123

= [[m[m,E]],[m[m[m[m,E]]]]]

(by the Jacobi identity and (A.8),(A.12) ) 

= [m[[m,E],[m[m[m[m,E]]]]]] - [[m,E],[m[m[m[m[m,E]]]] ] ] ]

(by the Jacobi identity)

= -2[m[E[m[m[m[m[m,E]]]]]]] (by (A.7),(A.8))

= 0 (A.13)

Now let n^m’£ m. Then the Jacobi identity implies

[m'tmtmO.E]]]]

= [[mT,m],[m[m,E]]] + [m[m'[m[m,E]]]]

= 2[m[[mf,m],[m,E]]]] + [m[m*[m[m,E]]]] (by (A.10))

= S O I V O ^ E ] ] ] ]  - 2[m[m[m,[m,E]]]] (A.14)

In particular, if 5 is a differential operator then (using 
(A.8))

d[m[m[m[m,E]]]] = 4[m[dm[m[m,E]]]] (A.15)

2 2Lastly, since (adE) = k on m, one has for all m,m’ 6
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[m[m,m,]] =

= <-2[E[m[

< 2[E[E[m[m,m']]]]

K-2[E[[E,m],[m,m']]] (by

'[m,E]]] - K_2[E[m'[m[m,E]]]]

(A.7)) 

(A.16)
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CHAPTER 5: CONCLUDING REMARKS
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The object of the work presented here has been to 
construct the algebra of conserved quantities for classical 
integrable systems which have zero curvature representations. 
It has been seen that this problem amounts to the construction 
of "dynamical" (Poisson bracket) realizations of centre free 
Kac-Moody algebras.

Although the formal linearization of these systems was
given, the construction of explicit solutions was not carried
out. This problem should make it possible to establish the
connection between the present formalism and the work
initiated by the Kyoto group [l] on the KP-hierarchy.

To see how these ideas may be linked, recall that the
starting point in Chapter 4 was a family of operators d andn, g
a "zero-curvature" equation which is the consistency condition 
for the system of equations:

O + A )<£ = 0 n,g n,g'

where one could choose

(1)

An,g
. n X g (2)

The dynamical equations of interest arose from the central 
hierarchy, corresponding to g = E. Then (1) has the solution

* = exp(-s”__i)sXI1tn ^E) (3)

The gauge potentials of the central hierarchy were obtained 
by applying the transformation or <|>u, i.e. the system (1)
becomes
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0 = (&n g  + \n4>u)Eci)  ̂ - ((pw)na) 1 cp  ̂)cpo)exp(-Sn=s_Qo\ntn gE) (4)

(and similarly with <pw replaced by ¥Q). If one restricts tQ g 
to the fundamental hierarchy (n>0) then the group valued 
solution becomes

w = ^wexp(-s"=0\ntn^gE) (5)

This is (essentially) the "wave function" of the Kyoto group. 
In their formalism, one solves the dynamical system by 
relating w to the "x function". Here, one notes that there are 
actually two expressions for the "wave function" (the other 
has (po) replaced by YQ), which differ by a factor which is a 
polynomial in \ with constant coefficients. The dynamical 
solution might be obtainable if it is possible to "match" 
these two expressions (infinite polynomials). This could 
connect with the Riemann-Hilbert approach to integrable 
systems [2].

The x function is usually regarded as a determinant on an 
infinite dimensional Grassmanian, and this interpretation has 
recently aroused interest within the context of string theory
[3]. It may seem a pure coincidence that the mathematics of 
integrable systems (Kac-Moody algebras and their groups) 
should play a role there; on the other hand, integrable 
systems provide an extremal class (totally ordered, as opposed 
to totally disordered sytems), and one might expect Nature (or 
physicists) to favour one or other extremum at the fundamental 
level. However, the Grassmanian approach does not seem to 
offer any new insight into the physical principle (e.g. 
symmetry) which might underlie string theory. It is
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interesting that the present formalism is expressed in terms 
of current algebras (which provided the original approach to 
string theory), and uses the concept of "internal symmetry", 
which is of such importance in contemporary physics. If any 
deeper physical significance is to be attached to the 
dynamical realizations of Kac-Moody algebras, then two 
important problems should be considered. First, one should 
clarify the precise definition of "totally ordered" systems. 
It has been seen that the definitions of complete 
integrability become ambiguous in the infinite dimensional 
(field theory) case; given infinitely many conserved 
quantities it is not always clear whether one really has 
"enough". The systems which have been considered here seem to 
be worthy of the description "totally ordered", but there may 
be other equally worthy syterns which do not arise as 
realizations of Kac-Moody algebras. A precise definition of 
the concept of integrability applicable to field theories may 
prove to be equivalent to some kind of symmetry principle, 
which may be of relevance in fundamental physics. (The "gauge 
principle" of physics was already generalized in Chapter 4, 
where the directions of the original "space" were 
non-commuting). The second problem is to extend the formalism 
to quantum systems. This could probably be carried out in the 
manner of BRS quantization [4], which again is of importance 
in current approaches to string theory.

One could synthesize the two questions into the single 
problem of finding an appropriate way to discuss 
"integrability" for quantum field theories. These matters are 
the subject of current investigation.
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